naphthoquinones has been researched along with Parkinsonian-Disorders* in 3 studies
3 other study(ies) available for naphthoquinones and Parkinsonian-Disorders
Article | Year |
---|---|
Appraisal of anti-Parkinson activity of rhinacanthin-C in haloperidol-induced parkinsonism in mice: A mechanistic approach.
This study aimed to appraise the anti-Parkinson's potential of rhinacanthin-C (RC). RC (5, 10, and 20 mg/kg) was orally administered for 25 days in albino mice to treat haloperidol-induced parkinsonism (1 mg/kg). RC significantly (p < .05) improved the motor symptoms in block, bar, rotarod, and balance beam walking tests in treated mice. RC reduced the cataleptic effect dose-dependently. The RC therapy notably (p < .001) enhanced reduced glutathione, catalase, and superoxide dismutase levels while decreased malondialdehyde and nitrite levels in the tissue homogenates of the treated mice. The RC therapy significantly (p < .01-.001) restored the dopamine, norepinephrine, and serotonin levels in the brain tissue of treated mice as co-evidenced from brain histology. RC did not adversely affect complete blood count, and liver and kidney function tests. Taken together, these results have shown that RC is effective in treating motor and non-motor symptoms of Parkinson's disease. PRACTICAL APPLICATIONS: Rhinacanthus nasutus is a medicinally rich plant that has folklore use in several ailments. The plant possessed multiple pharmacological activities due to the presence of naphthoquinones. The major compound of this plant rhinacanthin-C was used in the present study to evaluate it's anti-Parkinson's activity. The results provide scientific evidence of the anti-Parkinson's potential of rhinacanthin-C that support the use of R. nasutus leaves in the prevention and treatment of Parkinson's disorder. Topics: Acanthaceae; Animals; Haloperidol; Mice; Naphthoquinones; Parkinsonian Disorders | 2021 |
Naphthazarin has a protective effect on the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson's disease model.
"Neurohormesis" refers to a response to a moderate level of stress that enhances the ability of the nervous systems to resist more severe stress that might be lethal or cause dysfunction or disease. Neurohormetic phytochemicals, such as, resveratrol, sulforaphane, curcumin, and catechins, protect neurons against injury and disease. Naphthoquinones, such as, juglone and plumbagin, induce robust hormetic stress responses. However, the possibility that subtoxic dose of 5,8-dihydroxy-1,4-naphthoquinone (naphthazarin) may protect against brain diseases via the activation of an adaptive stress response pathway in the brain has not been investigated. In this study, we examined the neurohormetic effect of a subtoxic dose of naphthazarin in a Parkinson's disease model. It was found that, under these conditions, naphthazarin enhanced movement ability, prevented loss of dopaminergic neurons, and attenuated neuroinflammation in a 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson's disease model. Furthermore, it was found that the neuroprotective effect of naphthazarin was mediated by the suppression of astroglial activation in response to 1-methyl-4-phenylpyridine treatment. In conclusion, we suggest that naphthazarin, in view of its hormetic effect on neuroprotection, be viewed as a potential treatment for Parkinson's disease and other neurodegenerative diseases associated with neuroinflammation. Topics: Animals; Astrocytes; Blotting, Western; Cell Survival; Disease Models, Animal; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Naphthoquinones; Neurons; Neuroprotective Agents; Parkinsonian Disorders | 2012 |
Neuroprotection in the MPTP Parkinsonian C57BL/6 mouse model by a compound isolated from tobacco.
Epidemiological evidence suggests a lower incidence of Parkinson's disease in smokers than in nonsmokers. This evidence, together with the lower levels of brain monoamine oxidase (MAO) activity in smokers and the potential neuroprotective properties of MAO inhibitors, prompted studies which led to the isolation and characterization of 2,3,6-trimethyl-1,4-naphthoquinone (TMN), an MAO-A and MAO-B inhibitor which is present in tobacco and tobacco smoke. Results of experiments reported here provide evidence that this compound protects against the MPTP-mediated depletion of neostriatal dopamine levels in the C57BL/6 mouse. These results support the hypothesis that the inhibition of MAO by constituents of tobacco smoke may be related to the decreased incidence of Parkinson's disease in smokers. Topics: Animals; Brain; Disease Models, Animal; Dopamine; Mice; Mice, Inbred C57BL; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Naphthoquinones; Neostriatum; Neuroprotective Agents; Nicotiana; Parkinsonian Disorders; Plant Extracts; Plants, Toxic | 2001 |