naphthoquinones has been researched along with Pancreatic-Neoplasms* in 41 studies
1 trial(s) available for naphthoquinones and Pancreatic-Neoplasms
Article | Year |
---|---|
CanStem111P trial: a Phase III study of napabucasin plus nab-paclitaxel with gemcitabine.
Napabucasin (also known as BBI-608 or BBI608) is an investigational, oral agent hypothesized to inhibit multiple oncogenic pathways. In this article, we describe the design and rationale for the CanStem111P clinical trial, a multicenter, randomized, open-label, Phase III study designed to determine the efficacy and safety of combining napabucasin with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma (NCT02993731). Patients were randomized in a 1:1 fashion to receive weekly gemcitabine and nab-paclitaxel with or without napabucasin. The results of this study will help define the role of this novel agent in the management of advanced pancreatic cancer. Topics: Administration, Oral; Adult; Albumins; Antineoplastic Combined Chemotherapy Protocols; Benzofurans; Carcinoma, Pancreatic Ductal; Clinical Trials, Phase III as Topic; Deoxycytidine; Drug Administration Schedule; Gemcitabine; Humans; Multicenter Studies as Topic; Naphthoquinones; Paclitaxel; Pancreatic Neoplasms; Progression-Free Survival; Randomized Controlled Trials as Topic; Young Adult | 2019 |
40 other study(ies) available for naphthoquinones and Pancreatic-Neoplasms
Article | Year |
---|---|
Plumbagin binds to epidermal growth factor receptor and mitigate the effects of epidermal growth factor micro-environment in PANC-1 cells.
A sustained increase in the mortality of pancreatic cancer (PC) and sudden metastasis-related mortality is a cause for concern. Aberrant expression of epidermal growth factor (EGF) receptor (EGFR) is noted in several cases of PC metastasis. The present study is aimed at analyzing the expression of EGFR in PC and its relevance to the progression of PC. Despite the number of studies that have shown the benefits of plumbagin on PC cells, its role on cancer stem cells remains largely unknown. To this end, the study used an EGF micro-environment to make cancer stem cells in vitro and ascertained the role of plumbagin in mitigating the actions of EGF. The kaplan-meier (KM) plot indicated reduced overall survival (OS) analysis in PC patients with high EGFR than low EGFR expression. Plumbagin pre-treatment significantly prevented EGF-induced survival, epithelial-to-mesenchymal transition (EMT), clonogenesis, migration, matrix metalloproteinase -2 (MMP-2) gene expression and its secretion, and matrix protein hyaluron production in PANC-1 cells. The computational studies indicate the greater affinity of plumbagin with different domains of EGFR than gefitinib. Several hallmarks of resistance and migration due to EGF are effectively attenuated by plumbagin. Collectively, these results warrant investigating the actions of plumbagin in a pre-clinical study to substantiate these findings. Topics: Cell Line, Tumor; Epidermal Growth Factor; ErbB Receptors; Humans; Naphthoquinones; Pancreatic Neoplasms | 2023 |
β-lapachone: A Promising Anticancer Agent with a Unique NQO1 Specific Apoptosis in Pancreatic Cancer.
Cancer, one of the major health problems all over the world, requires more competent drugs for clinical use. One recent possible chemotherapeutic drug under research is β-lapachone. β- lapachone (1,2-naphthoquinone) has promising activity against those tumors showing raised levels of Nicotinamide di-phosphate Quinone Oxidoreductases-1 (NQO1). NQO1 is found to be up-regulated in pancreatic tumor cells, and thus β-lapachone could generate cytotoxicity in various cancers like pancreatic tumors. β-lapachone harborage independent growth and clonogenic cell survival in agar. The cell-killing effects of β-lapachone can be stopped by using dicumarol, an inhibitor of NAD(P)H Quinone Oxidoreductases-1. In previously established pancreatic cancer xenografts in mice, β- lapachone inhibited the tumor growth when given orally rather than when combined with cyclodextrin to improve its bioavailability. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Humans; Mice; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Niacinamide; Pancreatic Neoplasms; Phosphates | 2022 |
Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells.
Shikonin is the main component of root extracts from the Chinese herbal medicine Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Humans; Molecular Docking Simulation; Naphthoquinones; p21-Activated Kinases; Pancreatic Neoplasms | 2022 |
X-ray repair cross-complementing protein 1 (XRCC1) loss promotes β-lapachone -induced apoptosis in pancreatic cancer cells.
β-lapachone (β-lap), the NQO1 bioactivatable drug, is thought to be a promising anticancer agent. However, the toxic side effects of β-lap limit the drug use, highlighting the need for a thorough understanding of β-lap's mechanism of action. β-lap undergoes NQO1-dependent futile redox cycling, generating massive ROS and oxidative DNA lesions, leading to cell death. Thus, base excision repair (BER) pathway is an important resistance factor. XRCC1, a scaffolding component, plays a critical role in BER.. We knocked down XRCC1 expression by using pLVX-shXRCC1 in the MiaPaCa2 cells and BxPC3 cells and evaluated β-lap-induced DNA lesions by γH2AX foci formation and alkaline comet assay. The cell death induced by XRCC1 knockdown + β-lap treatment was analysed by relative survival, flow cytometry and Western blotting analysis.. We found that knockdown of XRCC1 significantly increased β-lap-induced DNA double-strand breaks, comet tail lengths and cell death in PDA cells. Furthermore, we observed combining XRCC1 knockdown with β-lap treatment switched programmed necrosis with β-lap monotherapy to caspase-dependent apoptosis.. These results indicate that XRCC1 is involved in the repair of β-lap-induced DNA damage, and XRCC1 loss amplifies sensitivity to β-lap, suggesting targeting key components in BER pathways may have the potential to expand use and efficacy of β-lap for gene-based therapy. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Survival; Comet Assay; DNA Breaks, Double-Stranded; DNA Repair; DNA, Neoplasm; G2 Phase Cell Cycle Checkpoints; Histones; Humans; M Phase Cell Cycle Checkpoints; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Necroptosis; Pancreatic Neoplasms; Poly (ADP-Ribose) Polymerase-1; S Phase Cell Cycle Checkpoints; X-ray Repair Cross Complementing Protein 1 | 2021 |
Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models.
With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response. Topics: Animals; Benzofurans; Blotting, Western; Cell Line, Tumor; DNA-(Apurinic or Apyrimidinic Site) Lyase; HCT116 Cells; Humans; Immunohistochemistry; Mice; Naphthoquinones; Nitriles; Pancreatic Neoplasms; Pyrazoles; Pyrimidines; Reactive Oxygen Species; STAT3 Transcription Factor; Tumor Microenvironment | 2021 |
Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signaling.
We aimed to investigate the effects of juglone on angiogenesis, metastasis and cell proliferation processes in pancreatic cancer (PC) and to understand whether its possible effects occur via the Wnt signaling pathway by analyzing the expression levels of target genes of Wnt signaling.. PC is a silent and lethal cancer type which can only be detectable after metastasis and angiogenesis processes occured. The Wnt signaling pathway is one of the pathways that plays an active role in many biological processes in the cell. Mutations in the genes of this signaling pathway are related to the development of many cancers. Juglone, a natural compound, is shown to have cytotoxic and apoptotic effects on various cancer cells.. PANC-1 and BxPC-3 pancreatic cancer cells were treated with juglone at Topics: beta Catenin; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Naphthoquinones; Neovascularization, Pathologic; Pancreatic Neoplasms; Wnt Signaling Pathway | 2021 |
Discovery of a Napabucasin PROTAC as an Effective Degrader of the E3 Ligase ZFP91.
Napabucasin, undergoing multiple clinical trials, was reported to inhibit the signal transducer and transcription factor 3 (STAT3). To better elucidate its mechanism of action, we designed a napabucasin-based proteolysis targeting chimera (PROTAC), Topics: Benzofurans; Cell Line, Tumor; Drug Design; Drug Screening Assays, Antitumor; Gene Knockdown Techniques; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mutant Chimeric Proteins; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Pancreatic Neoplasms; Proteolysis; Signal Transduction; STAT3 Transcription Factor; Structure-Activity Relationship; Ubiquitin-Protein Ligases | 2021 |
Shikonin-mediated PD-L1 degradation suppresses immune evasion in pancreatic cancer by inhibiting NF-κB/STAT3 and NF-κB/CSN5 signaling pathways.
Pancreatic cancer (PC) is a highly fatal malignancy with few effective therapies currently available. Recent studies have shown that PD-L1 inhibitors could be potential therapeutic targets for the treatment of PC. The present study aims to investigate the effect of Shikonin on immune evasion in PC with the involvement of the PD-L1 degradation.. Initially, the expression patterns of PD-L1 and NF-κB in PC were predicted in-silico using the GEPIA database, and were subsequently validated using PC tissues. Thereafter, the correlation of NF-κB with STAT3, CSN5 and PD-L1 was examined. PC cells were treated with Shikonin, NF-κB inhibitor, STAT3 activator, and CSN5 overexpression plasmid to investigate effects on PD-L1 glycosylation and immune evasion in PC. Finally, in vivo tumor formation was induced in C57BL/6J mice, in order to verify the in vitro results.. PD-L1, NF-κB, NF-κB p65, STAT3, and CSN5 were highly expressed in PC samples, and NF-κB was positively correlated with STAT3/CSN5/PD-L1. Inhibition of NF-κB decreased PD-L1 glycosylation and increased PD-L1 degradation, whereas activated STAT3 and overexpressed CSN5 reversed these trends. Shikonin blocked immune evasion in PC, and lowered the expression of PD-L1, NF-κB, NF-κB p65, STAT3 and CSN5 in vivo and in vitro.. The findings indicated Shikonin inhibited immune evasion in PC by inhibiting PD-L1 glycosylation and activating the NF-κB/STAT3 and NF-κB/CSN5 signaling pathways. These effects of Shikonin on PC cells may bear important potential therapeutic implications for the treatment of PC. Topics: Animals; Antineoplastic Agents; B7-H1 Antigen; Biomarkers, Tumor; Blotting, Western; Cell Line, Tumor; COP9 Signalosome Complex; Flow Cytometry; Humans; Immunohistochemistry; Intracellular Signaling Peptides and Proteins; Male; Mice; Mice, Inbred C57BL; Naphthoquinones; NF-kappa B; Pancreatic Neoplasms; Peptide Hydrolases; Signal Transduction; STAT3 Transcription Factor; Tumor Escape; Xenograft Model Antitumor Assays | 2021 |
KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin.
Mutations in KRAS frequently occur in human cancer and are especially prevalent in pancreatic ductal adenocarcinoma (PDAC), where they have been shown to promote aggressive phenotypes. However, targeting this onco-protein has proven to be challenging, highlighting the need to further identify the various mechanisms used by KRAS to drive cancer progression. Here, we considered the role played by exosomes, a specific class of extracellular vesicles (EVs) derived from the endocytic cellular trafficking machinery, in mediating the ability of KRAS to promote cell survival. We found that exosomes isolated from the serum of PDAC patients, as well as from KRAS-transformed fibroblasts and pancreatic cancer cells, were all highly enriched in the cell survival protein Survivin. Exosomes containing Survivin, upon engaging serum-starved cells, strongly enhanced their survival. Moreover, they significantly compromised the effectiveness of the conventional chemotherapy drug paclitaxel, as well as a novel therapy that combines an ERK inhibitor with chloroquine, which is currently in clinical trials for PDAC. The survival benefits provided by oncogenic KRAS-derived exosomes were markedly reduced when depleted of Survivin using siRNA or upon treatment with the Survivin inhibitor YM155. Taken together, these findings demonstrate how KRAS mutations give rise to exosomes that provide a unique form of intercellular communication to promote cancer cell survival and therapy resistance, as well as raise interesting possibilities regarding their potential for serving as therapeutic targets and diagnostic markers for KRAS-dependent cancers. Topics: Cell Communication; Cell Line, Tumor; Cell Survival; Chloroquine; Exosomes; Extracellular Vesicles; Fibroblasts; Humans; Imidazoles; Mutation; Naphthoquinones; Paclitaxel; Pancreas; Pancreatic Neoplasms; Proto-Oncogene Proteins p21(ras); Survivin | 2021 |
Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2).
Pancreatic ductal adenocarcinoma (PDAC) has poor survival and treatment options. PDAC cells shift their metabolism towards glycolysis, which fuels the plasma membrane calcium pump (PMCA), thereby preventing Ca. PDAC cell growth, migration and death were assessed by using sulforhodamine-B/tetrazolium-based assays, gap closure assay and poly-ADP ribose polymerase (PARP1) cleavage, respectively. Cellular ATP and metabolism were assessed using luciferase/fluorescent-based assays and the Seahorse XFe96 analyzer, respectively. Cell surface biotinylation identified membrane-associated proteins. Fura-2 imaging was used to assess cytosolic Ca. The PKM2 inhibitor (shikonin) reduced PDAC cell proliferation, cell migration and induced cell death. This was due to inhibition of glycolysis, ATP depletion, inhibition of PMCA and cytotoxic Ca. Cutting off the PKM2-derived ATP supply to the PMCA represents a novel therapeutic strategy for the treatment of PDAC. Topics: Adenosine Triphosphate; Calcium; Carcinoma, Pancreatic Ductal; Carrier Proteins; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Cytosol; Glycolysis; Humans; Membrane Proteins; Naphthoquinones; Pancreas; Pancreatic Neoplasms; Thyroid Hormone-Binding Proteins; Thyroid Hormones | 2020 |
The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC.
Treating pancreatic ductal adenocarcinoma (PDAC) remains a major hurdle in the field of oncology. Less than half of patients respond to frontline chemotherapy and the pancreatic tumor microenvironment limits the efficacy of immunotherapeutic approaches. Targeted therapies could serve as effective treatments to enhance the clinical response rate. One potential therapeutic target is survivin, a protein that is normally expressed during embryonic and fetal development and has a critical impact on cell cycle control and apoptosis. In adulthood, survivin is not present in most normal adult cells, but is significantly re-expressed in tumor tissues. In PDAC, elevated survivin expression is correlated with treatment resistance and lower patient survival, although the underlying mechanisms of survivin's action in this type of cancer is poorly understood. Using patient derived xenografts of PDAC and their corresponding primary pancreatic cancer lines (PPCL-46 and PPCL-LM1) possessing increased expression of survivin, we aimed to evaluate the therapeutic response of a novel survivin inhibitor, UFSHR, with respect to survivin expression and the tumorigenic characteristics of PDAC. Cell viability and apoptosis analyses revealed that repressing survivin expression by UFSHR or YM155, a well-known inhibitor of survivin, in PPCLs effectively reduces cell proliferation by inducing apoptosis. Tumor cell migration was also hindered following treatment with YM155 and UFSHR. In addition, both survivin inhibitors, particularly UFSHR, effectively reduced progression of PPCL-46 and PPCL-LM1 tumors, when compared to the untreated cohort. Overall, this study provides solid evidence to support the critical role of survivin in PDAC progression and proposes a novel survivin inhibitor UFSHR that can become an alternative strategy for this type of cancer. Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Proliferation; Cell Survival; Disease Progression; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Mice; Naphthoquinones; Pancreatic Neoplasms; Precision Medicine; Survivin; Transplantation, Heterologous; Up-Regulation | 2020 |
Alkannin represses growth of pancreatic cancer cells based on the down regulation of miR-199a.
Alkannin displays tumor suppressive activity by initiating apoptosis. Here, we corroborated its role in pancreatic carcinoma (PANC-1) cells and addressed the molecular mechanism in which microRNA-199a (miR-199a) and Klotho might be implicated. PANC-1 and MIN6 cells were treated by alkannin and its role was evaluated in cellular viability. Next we assessed the ability of PANC-1 cells to proliferate, migrate, and invade as well as apoptosis process. Besides, proliferating cell nuclear antigen (PCNA), CyclinD1, p53, and caspases were quantified using Western blot. miR-199a was detected by qRT-PCR. miR-199a-silenced or -replenished cells were established to study its function role in Klotho in conjunction with alkannin. Further, Klotho-overexpressed or -silenced cells were constructed to investigate the alteration of mTOR and MEK/ERK pathways. Alkannin repressed the viability of PANC-1 cells instead of MIN6 cells. Alkannin counteracted the growth of PANC-1 cells through inhibiting proliferation, migration, and invasion and facilitating apoptosis, which was evidenced by the modulation on PCNA, CyclinD1, p53, and cleavage of caspases. The silence of miR-199a by alkannin was also involved in the antitumor process. Alkannin enhanced Klotho expression possibly through silencing miR-199a. Besides, mTOR and MEK/ERK signaling were counteracted by Klotho overexpression while facilitated by its silence. Alkannin inhibited the growth of PANC-1 cells via modulating miR-199a-Klotho node. During this process, mTOR and MEK/ERK pathways were blunted. Topics: Apoptosis; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Expression Regulation, Neoplastic; Glucuronidase; Humans; Klotho Proteins; MAP Kinase Signaling System; MicroRNAs; Naphthoquinones; Pancreatic Neoplasms; Signal Transduction; TOR Serine-Threonine Kinases | 2020 |
Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway.
Prognosis of pancreatic cancer patients remains extremely poor thus, the need for the development of new therapeutic options is crucial. Plumbagin, a naphthoquinone derivative from Plumbago indica has been found to possess various pharmacological properties including anticancer activity. The present study was designed to investigate the inhibitory potential of plumbagin and associated mechanisms in pancreatic cancer cells. Fluorescence and flow cytometric analysis exhibited an increased percentage of apoptotic cells in both monolayer culture and 3D tumor spheroids. Upon plumbagin treatment, reactive oxygen species content of the cancer cells escalated and prompted alleviation of the mitochondrial membrane potential, which triggers caspase-dependent apoptosis. Interestingly, N-acetylcysteine inhibited the plumbagin induced apoptosis. We also found that the expression of Bcl-2 protein decreased and the expression of Bax protein increased. Moreover, plumbagin treatment led to upregulation of cleaved caspase-3 and caspase-9. These results support the views that plumbagin induced stress signals by damaging mitochondria and induce ROS mediated apoptosis via intrinsic apoptotic signaling in pancreatic cancer cells. To summarize, our study suggests that plumbagin may be utilized as a future anti-cancer therapy agent against pancreatic cancer, which is a major threat owing to its stubborn intransigence towards current treatment regimens. Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Survival; DNA Damage; Humans; Membrane Potential, Mitochondrial; Mitochondria; Naphthoquinones; Oxidative Stress; Pancreatic Neoplasms; Reactive Oxygen Species; Signal Transduction | 2020 |
Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells.
Juglone and thymoquinone are cytotoxic to pancreatic cancer cells. The aim of this study was to investigate, using an analysis of isobolograms, the type and degree of interactions between juglone and thymoquinone on MIA PaCa-2 pancreatic cancer cells. Cell viability was evaluated using the MTT assay. Cell death was determined by flow cytometry. The IC Topics: Antineoplastic Agents; Apoptosis; Benzoquinones; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Drug Synergism; Humans; Naphthoquinones; Pancreatic Neoplasms | 2020 |
Bioactivation of Napabucasin Triggers Reactive Oxygen Species-Mediated Cancer Cell Death.
Napabucasin (2-acetylfuro-1,4-naphthoquinone or BBI-608) is a small molecule currently being clinically evaluated in various cancer types. It has mostly been recognized for its ability to inhibit STAT3 signaling. However, based on its chemical structure, we hypothesized that napabucasin is a substrate for intracellular oxidoreductases and therefore may exert its anticancer effect through redox cycling, resulting in reactive oxygen species (ROS) production and cell death.. Binding of napabucasin to NAD(P)H:quinone oxidoreductase-1 (NQO1), and other oxidoreductases, was measured. Pancreatic cancer cell lines were treated with napabucasin, and cell survival, ROS generation, DNA damage, transcriptomic changes, and alterations in STAT3 activation were assayed. Napabucasin was found to bind with high affinity to NQO1 and to a lesser degree to cytochrome P450 oxidoreductase (POR). Treatment resulted in marked induction of ROS and DNA damage with an NQO1- and ROS-dependent decrease in STAT3 phosphorylation. Differential cytotoxic effects were observed, where NQO1-expressing cells generating cytotoxic levels of ROS at low napabucasin concentrations were more sensitive. Cells with low or no baseline NQO1 expression also produced ROS in response to napabucasin, albeit to a lesser extent, through the one-electron reductase POR.. Napabucasin is bioactivated by NQO1, and to a lesser degree by POR, resulting in futile redox cycling and ROS generation. The increased ROS levels result in DNA damage and multiple intracellular changes, one of which is a reduction in STAT3 phosphorylation. Topics: Apoptosis; Benzofurans; Cell Proliferation; DNA Damage; Humans; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Oxidation-Reduction; Pancreatic Neoplasms; Reactive Oxygen Species; STAT3 Transcription Factor; Tumor Cells, Cultured | 2019 |
The Effects of Plumbagin on Pancreatic Cancer: A Mechanistic Network Pharmacology Approach.
BACKGROUND This study aimed to use a network pharmacology approach to establish the effects of plumbagin on pancreatic cancer (PC) and to predict core targets and biological functions, pathways, and mechanisms of action. MATERIAL AND METHODS Genes associated with the pathogenesis of PC were obtained from a database of gene-disease associations (DisGeNET). Putative genes associated with plumbagin were identified from the databases of drug target identification (PharmMapper), target prediction of bioactive components (SwissTargetPrediction), and comprehensive drug target information (DrugBank). PC targets of plumbagin were harvested by using a functional enrichment analysis tool (FunRich). The data of function-related protein-protein interactions (PPIs) with a confidence score >0.9 were obtained by using functional protein association networks (STRING). The network interactions of plumbagin and PC targets and function-related proteins were constructed through complex network analysis and visualization (Cytoscape). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were used to identify the effects of plumbagin. RESULTS The most important biotargets for plumbagin in PC were identified as TP53, MAPK1, BCL2, and IL6. A total of 1,731 annotations and 121 enriched pathways for plumbagin and PC were identified by KEGG and GO analysis. The top 10 signaling pathways of plumbagin and PC were screened, followed by identification of biological components and functions. CONCLUSIONS Network pharmacology established the effects of plumbagin on PC, predicted core targets, biological functions, pathways, and mechanisms of action. Further studies are needed to validate these predictive biotargets in PC. Topics: Biomarkers, Tumor; Computational Biology; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Ontology; Gene Regulatory Networks; Humans; Naphthoquinones; Pancreatic Neoplasms; Protein Interaction Maps; Signal Transduction | 2019 |
Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury.
Topics: Animals; Antineoplastic Agents; Carcinoma, Pancreatic Ductal; Cell Transformation, Neoplastic; Ceruletide; Disease Models, Animal; Disease Progression; Gene Knockdown Techniques; Heterografts; Humans; Metaplasia; Mice; Mice, Inbred C57BL; Mice, Nude; Mice, Transgenic; Naphthoquinones; Pancreas; Pancreatic Neoplasms; Precancerous Conditions; Snail Family Transcription Factors; Tumor Cells, Cultured | 2018 |
Nucleus-Targeted, Echogenic Polymersomes for Delivering a Cancer Stemness Inhibitor to Pancreatic Cancer Cells.
Chemotherapeutic agents for treating cancers show considerable side effects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport and subsequently release the encapsulated anticancer drugs within the nuclei of pancreatic cancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N Topics: Antineoplastic Agents; Benzofurans; Cell Nucleus; Cell Survival; Drug Carriers; Drug Delivery Systems; Humans; Naphthoquinones; Neoplastic Stem Cells; Pancreatic Neoplasms; Polymers; Tumor Cells, Cultured | 2018 |
Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer.
Novel, tumor-selective therapies are needed to increase the survival rate of pancreatic cancer patients. K-Ras-mutant-driven NAD(P)H:quinone oxidoreductase 1 (NQO1) is over-expressed in pancreatic tumor versus associated normal tissue, while catalase expression is lowered compared to levels in associated normal pancreas tissue. ARQ761 undergoes a robust, futile redox cycle in NQO1+ cancer cells, producing massive hydrogen peroxide (H Topics: Albumins; Antineoplastic Combined Chemotherapy Protocols; Clinical Trials, Phase I as Topic; Deoxycytidine; Gemcitabine; Humans; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Paclitaxel; Pancreatic Neoplasms | 2017 |
Preclinical assesement of survivin and XIAP as prognostic biomarkers and therapeutic targets in gastroenteropancreatic neuroendocrine neoplasia.
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) represent a rare and heterogenous tumor entity. Importantly, the highly proliferative subgroup of neuroendocrine carcinoma (GEP-NEC) is characterized by high resistance to conventional chemotherapy. Consequently, there is an urgent need to identify novel therapeutic targets, especially for GEP-NEC. Thus, we focused on Inhibitor of apoptosis protein (IAP) family members survivin and XIAP that orchestrate inhibition of apoptosis, induce resistance against chemotherapeutics and facilitate tumor metastasis. Copy number gains (CNGs) could be detected by microarray comparative genomic hybridization for survivin and XIAP in 60 % and 26.7 % of all GEP-NENs, respectively. Immunohistochemical staining of tissue specimens from 77 consecutive patients with GEP-NEN demonstrated increased survivin protein expression levels in tissue specimens of highly proliferative GEP-NEC or GEP-NEN located in the stomach and colon. In contrast, XIAP overexpression was associated with advanced tumor stages. Knockdown of survivin and XIAP markedly reduced cell proliferation and tumor growth. In vitro, YM155 induced apoptotic cell death accompanied by a reduction in cell proliferation and inhibited GEP-NEC xenograft growth. Taken together, our data provide evidence for a biological relevance of these IAPs in GEP-NEN and support a potential role of survivin as therapeutic target especially in the subgroup of aggressive GEP-NEC. Topics: Animals; Antineoplastic Agents; Apoptosis; Biomarkers, Tumor; Carcinoma, Neuroendocrine; Cell Line, Tumor; Cell Proliferation; Comparative Genomic Hybridization; DNA Copy Number Variations; Dose-Response Relationship, Drug; Female; Gene Dosage; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Immunohistochemistry; Inhibitor of Apoptosis Proteins; Intestinal Neoplasms; Male; Masoprocol; Mice, Inbred NOD; Mice, SCID; Molecular Targeted Therapy; Naphthoquinones; Oligonucleotide Array Sequence Analysis; Pancreatic Neoplasms; Retrospective Studies; RNA Interference; Signal Transduction; Stomach Neoplasms; Survivin; Time Factors; Transfection; Tumor Burden; X-Linked Inhibitor of Apoptosis Protein; Xenograft Model Antitumor Assays | 2017 |
Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells.
Juglone, a natural component, is shown to have cytotoxic and apoptotic effects in several cancer cell lines. However, little is known about its effects on invasion and metastasis. In this study, we aimed to determine the antimetastatic effect of juglone in the BxPC-3 and PANC-1 pancreatic cancer cell lines. Cytotoxic effect of juglone was evaluated by using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) test. The cells were treated with juglone at Topics: Antineoplastic Agents; Cell Adhesion; Cell Line, Tumor; Cell Survival; Gene Expression; Humans; Metalloendopeptidases; Naphthoquinones; Neoplasm Metastasis; Neovascularization, Pathologic; Pancreatic Neoplasms | 2016 |
Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors.
Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition. In NQO1 Topics: Animals; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Damage; Drug Synergism; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mice; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Pancreatic Neoplasms; Poly(ADP-ribose) Polymerase Inhibitors; Reactive Oxygen Species; Up-Regulation; Xenograft Model Antitumor Assays | 2016 |
Small molecule inhibitor YM155-mediated activation of death receptor 5 is crucial for chemotherapy-induced apoptosis in pancreatic carcinoma.
Despite much effort, pancreatic cancer survival rates are still dismally low. Novel therapeutics may hold the key to improving survival. YM155 is a small molecule inhibitor that has shown antitumor activity in a number of cancers by reducing the expression of survivin. The aim of our study is to understand the mechanisms by which YM155 functions in pancreatic cancer cells. We established the antitumor effect of YM155 with in vitro studies in cultured cells, and in vivo studies using a mouse xenograft model. Our data demonstrated that YM155 reduced the expression of survivin; however, downregulation of survivin itself is insufficient to induce apoptosis in pancreatic cancer cells. We showed for the first time that treatment with YM155 increased death receptor 5 (DR5) expression in pancreatic cancer cells. We found that YM155 induced apoptosis by broad-spectrum inhibition of IAP family member proteins (e.g., CIAP1/2 and FLIP) and induced proapoptotic Bak protein upregulation and activation; the antitumor effect of YM155 treatment with either the DR5 agonist lexatumumab or gemcitabine on pancreatic cancer cells was synergistic. Our data also revealed that YM155 inhibits tumor growth in vivo, without apparent toxicity to the noncancerous human pancreatic ductal epithelial cell line. Together, these findings suggest that YM155 could be a novel therapeutic agent for pancreatic cancer. Topics: Animals; Antibodies, Monoclonal; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Drug Synergism; Gemcitabine; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, SCID; Naphthoquinones; Pancreatic Neoplasms; Receptors, TNF-Related Apoptosis-Inducing Ligand; Survivin; Xenograft Model Antitumor Assays | 2015 |
NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone.
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption. Synergy with FK866+β-lap was tumor-selective, only occurring in NQO1-overexpressing cancer cells, which is noted in a majority (∼85%) of PDA cases. This treatment strategy simultaneously decreases NAD(+) synthesis while increasing NAD(+) consumption, reducing required doses and treatment times for both drugs and increasing potency. These complementary mechanisms caused profound NAD(P)(+) depletion and inhibited glycolysis, driving down adenosine triphosphate levels and preventing recovery normally observed with either agent alone. Cancer cells died through an ROS-induced, μ-calpain-mediated programmed cell death process that kills independent of caspase activation and is not driven by PAR accumulation, which we call NAD(+)-Keresis. Non-overlapping specificities of FK866 for PDA tumors that rely heavily on NAMPT-catalyzed NAD(+) synthesis and β-lap for cancer cells with elevated NQO1 levels affords high tumor-selectivity. The concept of reducing NAD(+) pools in cancer cells to sensitize them to ROS-mediated cell death by β-lap is a novel strategy with potential application for pancreatic and other types of NQO1+ solid tumors. Topics: Acrylamides; Cell Death; Cell Line, Tumor; DNA Breaks, Double-Stranded; Drug Synergism; Energy Metabolism; Glycolysis; Humans; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Nicotinamide Phosphoribosyltransferase; Pancreatic Neoplasms; Piperidines; Poly Adenosine Diphosphate Ribose; Reactive Oxygen Species | 2015 |
Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells.
Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways. Topics: Antineoplastic Agents, Phytogenic; Apoptosis Regulatory Proteins; Autophagy; Cell Cycle Checkpoints; Cell Survival; Dose-Response Relationship, Drug; Enzyme Activation; Epithelial-Mesenchymal Transition; Humans; Naphthoquinones; p38 Mitogen-Activated Protein Kinases; Pancreatic Neoplasms; Phenotype; Phosphatidylinositol 3-Kinase; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Time Factors; TOR Serine-Threonine Kinases | 2015 |
Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation.
Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells:. quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy. Topics: Acrylamides; Cell Death; Cell Line; Cell Line, Tumor; Humans; Immunoblotting; Membrane Potential, Mitochondrial; Naphthoquinones; Pancreatic Neoplasms; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species | 2015 |
β-Lapachone and Paclitaxel Combination Micelles with Improved Drug Encapsulation and Therapeutic Synergy as Novel Nanotherapeutics for NQO1-Targeted Cancer Therapy.
β-Lapachone (LPC) is a novel cytotoxic agent that is bioactivated by NADP(H): quinone oxidoreductase 1 (NQO1), an enzyme elevated in a variety of tumors, such as non-small cell lung cancer (NSCLC), pancreatic cancer, liver cancer, and breast cancer. Despite its unique mechanism of action, its clinical evaluation has been largely hindered by low water solubility, short blood half-life, and narrow therapeutic window. Although encapsulation into poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-PLA) micelles could modestly improve its solubility and prolong its half-life, the extremely fast intrinsic crystallization tendency of LPC prevents drug loading higher than ∼2 wt %. The physical stability of the LPC-loaded micelles is also far from satisfactory for further development. In this study, we demonstrate that paclitaxel (PTX), a front-line drug for many cancers, can provide two functions when coencapsulated together with LPC in the PEG-PLA micelles; first, as a strong crystallization inhibitor for LPC, thus to significantly increase the LPC encapsulation efficiency in the micelle from 11.7 ± 2.4% to 100.7 ± 2.2%. The total drug loading efficiency of both PTX and LPC in the combination polymeric micelle reached 100.3 ± 3.0%, and the drug loading density reached 33.2 ± 1.0%. Second, the combination of LPC/PTX demonstrates strong synergistic cytotoxicity effect against the NQO1 overexpressing cancer cells, including A549 NSCLC cells, and several pancreatic cancer cells (combination index <1). In vitro drug release study showed that LPC was released faster than PTX either in phosphate-buffered saline (PH = 7.4) or in 1 M sodium salicylate, which agrees with the desired dosing sequence of the two drugs to exert synergistic pharmacologic effect at different cell checkpoints. The PEG-PLA micelles coloaded with LPC and PTX offer a novel nanotherapeutic, with high drug loading, sufficient physical stability, and biological synergy to increase drug delivery efficiency and optimize the therapeutic window for NOQ1-targeted therapy of cancer. Topics: Anti-Infective Agents; Antineoplastic Agents, Phytogenic; Apoptosis; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Synergism; Drug Therapy, Combination; Humans; Lung Neoplasms; Micelles; NAD(P)H Dehydrogenase (Quinone); Nanotechnology; Naphthoquinones; Paclitaxel; Pancreatic Neoplasms; Polymers; Tumor Cells, Cultured | 2015 |
Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone.
Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The. Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition. ß-Lapachone undergoes NQO1-dependent futile redox cycling, generating massive intracellular hydrogen peroxide levels and oxidative DNA lesions that stimulate poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation. Rapid NAD(+)/ATP depletion and programmed necrosis results. To identify BER modulators essential for repair of ß-lapachone-induced DNA base damage, a focused synthetic lethal RNAi screen demonstrated that silencing the BER scaffolding protein, XRCC1, sensitized PDA cells. In contrast, depleting OGG1 N-glycosylase spared cells from ß-lap-induced lethality and blunted PARP1 hyperactivation. Combining ß-lapachone with XRCC1 knockdown or methoxyamine (MeOX), an apyrimidinic/apurinic (AP)-modifying agent, led to NQO1-dependent synergistic killing in PDA, NSCLC, breast and head and neck cancers. OGG1 knockdown, dicoumarol-treatment or NQO1- cancer cells were spared. MeOX + ß-lapachone exposure resulted in elevated DNA double-strand breaks, PARP1 hyperactivation and TUNEL+ programmed necrosis. Combination treatment caused dramatic antitumor activity, enhanced PARP1-hyperactivation in tumor tissue, and improved survival of mice bearing MiaPaca2-derived xenografts, with 33% apparent cures.. Targeting base excision repair (BER) alone has limited therapeutic potential for pancreatic or other cancers due to a general lack of tumor-selectivity. Here, we present a treatment strategy that makes BER inhibition tumor-selective and NQO1-dependent for therapy of most solid neoplasms, particularly for pancreatic cancer. Topics: Animals; Autophagy; Catalase; Cell Line, Tumor; Cell Survival; Dicumarol; DNA Breaks, Double-Stranded; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; Female; Humans; Hydroxylamines; Mice; Mice, Nude; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Pancreatic Neoplasms; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species; Transplantation, Heterologous; X-ray Repair Cross Complementing Protein 1 | 2015 |
Topical henna ameliorated capecitabine-induced hand-foot syndrome.
Hand-foot syndrome (HFS) is the most frequently reported side effect of oral capecitabine therapy. In addition to treatment interruption and dose reduction, supportive treatments can help alleviate symptoms. Although its efficacy has not been proven in clinical studies, certain authors report on the use of prophylactic or therapeutic pyridoxine supplementation for the prevention of minimization to be useful in preventing worsening of HFS but are no substitute for dose modifications.. We report a case of an interesting observation in a patient with pancreatic cancer receiving capecitabine whose HFS was improved with the use of "henna".. Henna has been used for histories as a medicine, preservative, and cosmetic. Our case underlines the basis to further evaluate the anti-inflammatory, antipyretic, and analgesic effects of henna. We encourage other investigators to publish any similar cases or any other herbal or non-drug therapies. HFS is a common side effect of many drugs, including capecitabine, sorafinib and regorafenib. HFS is bothersome for patients even in low grades and impacts quality of life of patients. HFS cannot be prevented and currently the treatments aimed at controlling syndrome are not very effective. Exploring other potential treatment or management options such as henna is of high value. Topics: Adenocarcinoma; Antimetabolites, Antineoplastic; Capecitabine; Deoxycytidine; Female; Fluorouracil; Hand-Foot Syndrome; Humans; Middle Aged; Naphthoquinones; Pancreatic Neoplasms | 2014 |
Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-κB signaling pathway.
Although gemcitabine is currently the best chemotherapeutic agent available for the treatment of advanced pancreatic cancer, eventual failure of response is a significant clinical problem. Therefore, novel therapeutic approaches against this disease are highly needed. The aim of this study was to evaluate whether shikonin, a naphthoquinone derivative, has potential in the treatment of pancreatic cancer when used either alone or in combination with gemcitabine. Our in vitro results showed that shikonin inhibited the proliferation of three different human pancreatic cancer cell lines and potentiated the cytotoxic effect of gemcitabine, which correlated with the down-regulation of constitutive as well as gemcitabine-induced activation of NF-κB and NF-κB-regulated gene products. Most importantly, using a xenograft model of human pancreatic cancer, we found shikonin alone significantly suppressed tumor growth and argumented the antitumor activity of gemcitabine. These effects also correlated with the down-regulation of NF-κB activity and its target genes, decreased proliferation (PCNA and Ki-67), decreased microvessel density (CD31), and increased apoptosis (TUNEL) in tumor remnants. Collectively, our results suggest that shikonin can suppress the growth of human pancreatic tumors and potentiate the antitumor effects of gemcitabine through the suppression of NF-κB and NF-κB-regulated gene products. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Survival; Deoxycytidine; Drug Synergism; Gemcitabine; Humans; Male; Mice; Mice, Nude; Microvessels; Naphthoquinones; Neovascularization, Pathologic; NF-kappa B; Pancreatic Neoplasms; Signal Transduction; Xenograft Model Antitumor Assays | 2014 |
Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways.
Pancreatic cancer (PC) is the most aggressive malignant disease, ranks as the fourth most leading cause of cancer-related death among men and women in the United States. We present here that plumbagin (PL), a quinoid constituent isolated from the roots of the medicinal plant Plumbago zeylanica L, inhibits the growth of PC cells both in vitro and in vivo model systems. PL treatment induces apoptosis and inhibits cell viability of PC cells (PANC1, BxPC3 and ASPC1). In addition, i.p. administration of PL (2 mg/kg body weight, 5 days a week) in severe combined immunodeficiency (SCID) mice beginning 3 days after ectopic implantation of PANC1 cells resulted in a significant (P < 0.01) inhibition of both tumor weight and volume. PL treatment inhibited (1) constitutive expression of epidermal growth factor receptor (EGFR), pStat3Tyr705 and pStat3Ser727, (2) DNA binding of Stat3 and (3) physical interaction of EGFR with Stat3, in both cultured PANC1 cells and their xenograft tumors. PL treatment also inhibited phosphorylation and DNA-binding activity of NF-κB in both cultured PC cells (PANC1 and ASPC1) and in PANC1 cells xenograft tumors. Downstream target genes (cyclin D1, MMP9 and Survivin) of Stat3 and NF-κB were similarly inhibited. These results suggest that PL may be used as a novel therapeutic agent against human PC. Published 2012 Wiley-Liss, Inc. This article is a US Government work, and, as such, is in the public domain in the United States of America. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cyclin D1; ErbB Receptors; Humans; Inhibitor of Apoptosis Proteins; Male; Matrix Metalloproteinase Inhibitors; Mice; Mice, SCID; Naphthoquinones; NF-kappa B; Pancreatic Neoplasms; Phosphorylation; Plant Extracts; Signal Transduction; STAT3 Transcription Factor; Survivin | 2012 |
The survivin suppressant YM155 potentiates chemosensitivity to gemcitabine in the human pancreatic cancer cell line MiaPaCa-2.
Survivin is a negative regulator of apoptosis. We evaluated the efficacy of YM155, a selective suppressant of survivin, in combination with gemcitabine in the pancreatic cancer cell line MiaPaCa-2.. Expression of survivin was demonstrated by immunoblotting. Cell cycle progression was determined by flow cytometric analysis. Cell viability was assayed using the trypan blue exclusion assay.. Gemcitabine up-regulated survivin expression, whereas treatment with YM155 suppressed the expression of survivin. Concomitant treatment with YM155 enhanced chemosensitivity to gemcitabine, which was accompanied by a decrease in the expression of survivin. Knockdown of endogenous survivin via RNA interference also enhanced the sensitivity to gemcitabine. In addition, YM155 potentiated the antitumor effect of gemcitabine in xenograft tumors of MiaPaCa-2.. YM155 potentiates chemosensitivity to gemcitabine in pancreatic cancer cells by suppressing the induction of survivin. Combination treatment with gemcitabine and YM155 may be a potential therapeutic strategy for the treatment of pancreatic cancer that warrants further clinical investigation. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Deoxycytidine; Drug Resistance, Neoplasm; Drug Synergism; Female; Gemcitabine; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, Inbred BALB C; Naphthoquinones; Pancreatic Neoplasms; RNA, Small Interfering; Survivin | 2012 |
YM155 induces EGFR suppression in pancreatic cancer cells.
YM155, which inhibits the anti-apoptotic protein survivin, is known to exert anti-tumor effects in various cancers, including prostate and lung cancer. However, there are few reports describing the inhibitory effect of YM155 on human pancreatic cancers that highly express survivin. Here, we tested the effects of YM155 on a variety of cancer cell lines, including pancreatic cancer cells. We found that YM155 exerts an anti-proliferative effect in pancreatic cancer cells, inducing cell death through suppression of XIAP (X-linked inhibitor of apoptosis) as well as survivin without affecting the anti-apoptotic proteins Bcl-xL or Mcl-1. YM155 also inhibited tumor growth in vivo, reducing the size of pancreatic cancer cell line MIAPaCa-2 xenografts by 77.1% on day 31. Western blot analyses further showed that YM155 downregulated phosphoinoside 3-kinase (PI3K) expression and reduced the levels of phosphorylated (activated) extracellular signal-regulated kinase (ERK) and STAT3 (signal transducer and activator of transcription 3) in PANC-1 cells. Interestingly, we also found that YM155 downregulated the epidermal growth factor receptor (EGFR) in various cancer cell lines and induced the EGFR phosphorylation and ubiquitination of EGFR in PANC-1 cells. YM155 also modestly promoted the ubiquitination of survivin and XIAP. Therefore, YM155 acts through modulation of EGFR and survivin expression to subsequently reduce survival. We suggest that YM155 has potential as a therapeutic agent in the treatment of pancreatic cancer. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; ErbB Receptors; Extracellular Signal-Regulated MAP Kinases; Female; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Inhibitory Concentration 50; Mice; Mice, Nude; Naphthoquinones; Pancreatic Neoplasms; Phosphatidylinositol 3-Kinases; Phosphorylation; Promoter Regions, Genetic; Proteolysis; STAT3 Transcription Factor; Survivin; Tumor Burden; Ubiquitination; X-Linked Inhibitor of Apoptosis Protein; Xenograft Model Antitumor Assays | 2012 |
Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy.
Pancreatic cancer is the fourth leading cause of cancer-related deaths, in which the 5-year survival rate is less than 5%. Current standard of care therapies offer little selectivity and high toxicity. Novel, tumor-selective approaches are desperately needed. Although prior work suggested that β-lapachone (β-lap) could be used for the treatment of pancreatic cancers, the lack of knowledge of the compound's mechanism of action prevented optimal use of this agent.. We examined the role of NAD(P)H:quinone oxidoreductase-1 (NQO1) in β-lap-mediated antitumor activity, using a series of MIA PaCa-2 pancreatic cancer clones varying in NQO1 levels by stable shRNA knockdown. The antitumor efficacy of β-lap was determined using an optimal hydroxypropyl-β-cyclodextran (HPβ-CD) vehicle formulation in metastatic pancreatic cancer models.. β-Lap-mediated cell death required ∼90 enzymatic units of NQO1. Essential downstream mediators of lethality were as follows: (i) reactive oxygen species (ROS); (ii) single-strand DNA breaks induced by ROS; (iii) poly(ADP-ribose)polymerase-1 (PARP1) hyperactivation; (iv) dramatic NAD(+)/ATP depletion; and (v) programmed necrosis. We showed that 1 regimen of β-lap therapy (5 treatments every other day) efficaciously regressed and reduced human pancreatic tumor burden and dramatically extended the survival of athymic mice, using metastatic pancreatic cancer models.. Because NQO1 enzyme activities are easily measured and commonly overexpressed (i.e., >70%) in pancreatic cancers 5- to 10-fold above normal tissue, strategies using β-lap to efficaciously treat pancreatic cancers are indicated. On the basis of optimal drug formulation and efficacious antitumor efficacy, such a therapy should be extremely safe and not accompanied with normal tissue toxicity or hemolytic anemia. Topics: Animals; Antineoplastic Agents; Cell Death; Cell Line, Tumor; DNA Damage; Drug Evaluation, Preclinical; Gene Knockdown Techniques; Humans; Mice; Mice, Nude; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Pancreatic Neoplasms; Reactive Oxygen Species | 2011 |
The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro.
The aim of this study was to investigate the apoptosis resulting from NSC 95397, brefeldin A, bortezomib and sanguinarine in neuroendocrine tumor cell lines.. A multiparametric high-content screening assay for measurement of apoptosis was used. The human pancreatic carcinoid cell line, BON-1, human typical bronchial carcinoid cell line NCI-H727 and the human atypical bronchial carcinoid cell line NCI-H720 were tested. After incubation with cytotoxic drugs, the DNA-binding dye Hoechst 33342, fluorescein-tagged probes that covalently bind active caspase-3 and chloromethyl-X-rosamine to detect mitochondrial membrane potential were added. Image acquisition and quantitative measurement of fluorescence was performed using automated image capture and analysis instrument ArrayScan. In addition, nuclear morphology was examined on microscopic slides stained with May-Grunewald-Giemsa.. A time- and dose-dependent activation of caspase-3 and increase in nuclear fragmentation and condensation were observed for the drugs using a multiparametric apoptosis assay. These results were confirmed with nuclear morphological examination on microscopic slides.. NSC 95397, brefeldin A, bortezomib and sanguinarine induced caspase-3 activation with modest changes in nuclear morphology. Topics: Apoptosis; Benzophenanthridines; Boronic Acids; Bortezomib; Brefeldin A; Carcinoid Tumor; Carcinoma, Bronchogenic; Cell Line, Tumor; Drug Screening Assays, Antitumor; Humans; Isoquinolines; Lung Neoplasms; Naphthoquinones; Neuroendocrine Tumors; Pancreatic Neoplasms; Pyrazines | 2010 |
Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines.
There is a large need for better pharmacological treatment of neuroendocrine tumors. The aim of this study was to investigate and quantify the cytotoxic potentiating effects resulting from a combination of five substances, NSC 95397, emetine, CGP-74514A hydrochloride, Brefeldin A and sanguinarine chloride, chosen from a previous screening of 1,280 pharmacologically active agents on neuroendocrine tumor cells, with standard cytotoxic agents currently used in the treatment of neuroendocrine tumors.. The human pancreatic carcinoid cell line BON-1, human typical bronchial carcinoid cell line NCI-H727 and the human atypical bronchial carcinoid cell line NCI-H720 were used. Combinations between doxorubicin, etoposide, oxaliplatin, docetaxel, and each one of the five agents were studied and simultaneous exposures were explored using the median-effect method.. Most of the combinations of NSC-95397 and emetine with doxorubicin, etoposide, docetaxel, and oxaliplatin showed synergism, and their remaining combinations were additive. Almost all of the CGP-74514A hydrochloride interactions were additive, while brefeldin A and sanguinarine displayed less synergy but more additive and antagonistic interactions in combination with the standard drugs.. The synergistic and additive interactions make NSC-95397, emetine, and CGP-74514A hydrochloride potential candidates for incorporation into combination chemotherapy regimens and these drugs might be the suitable candidates for further clinical studies in patients with bronchial carcinoids and pancreatic endocrine tumors. Topics: 2-Aminopurine; Antineoplastic Combined Chemotherapy Protocols; Bronchial Neoplasms; Carcinoid Tumor; Cell Line, Tumor; Drug Screening Assays, Antitumor; Drug Synergism; Emetine; Humans; Naphthoquinones; Neuroendocrine Tumors; Pancreatic Neoplasms | 2009 |
Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells.
Pancreatic cancer is one of the most resistant malignancies. Several studies have indicated that plumbagin isolated from Plumbago zeylanica possesses anticancer activity. However, its antitumor effects against pancreatic cancer have not been explored.. We investigated the effect of plumbagin on the growth of human pancreatic carcinoma cells and its possible underlying mechanisms.. Plumbagin inhibited the growth of Panc-1 and Bxpc-3 cells in a dose-dependent and time-dependent manner. Liu's staining and transmission electron microscopy demonstrated morphological changes resembling apoptosis in Panc-1 cells treated with plumbagin. The degree of apoptosis was assessed by measuring the proportions of sub-G(1), annexin V+/propidium iodide-, and terminal- deoxynucleotidyl-transferase-mediated-nick-end labeling (TUNEL)+ cells, and a significant increment in apoptotic cells was observed. Exposure to plumbagin caused the upregulation of Bax, a rapid decline in mitochondrial transmembrane potential, apoptosis-inducing factor overexpression in cytosol, and the cleavage of procaspase-9 and poly ADP-ribose polymerase. Activation of caspase-3, but not caspase-8, was evidenced by fluorometric substrate assay. Pretreatment with caspase inhibitors did not block plumbagin-induced apoptosis. Alternatively, it is possible that plumbagin downregulated phosphoinositide 3-kinase activity through a negative feedback mechanism. In an orthotopic pancreatic tumor model, plumbagin markedly inhibited the growth of Panc-1 xenografts without any significant effect on leukocyte counts or body weight.. Plumbagin may induce apoptosis in human pancreatic cancer cells primarily through the mitochondria-related pathway followed by both caspase-dependent and caspase-independent cascades. It indicates that plumbagin can be potentially developed as a novel therapeutic agent against pancreatic cancer. Topics: Animals; Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Carcinoma; Caspases; Cell Line, Tumor; Cell Proliferation; Humans; Membrane Potential, Mitochondrial; Mice; Mice, Nude; Naphthoquinones; Pancreatic Neoplasms; Plumbaginaceae; Xenograft Model Antitumor Assays | 2009 |
Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1.
NAD(P)H:quinone oxidoreductase (NQO1) is elevated in human pancreatic cancers. We hypothesized that beta-lapachone, a novel 1,2-naphthoquinone with potential antitumor activity in cancer cells expressing elevated levels of NQO1, would induce cytotoxicity in pancreatic cancer cells, wherein this two-electron reductase was recently found elevated. beta-lapachone decreased clonogenic cell survival, metabolic cell viability, and anchorage- independent growth in soft agar. The cytotoxic in vitro effects of beta-lapachone were inhibited with coadministration of dicumarol, a specific inhibitor of NQO1. In preestablished human pancreatic tumor xenografts in nude mice, beta-lapachone demonstrated greater tumor growth inhibition when given intratumorally compared to when complexed with cyclodextrin to increase its bioavailability. Due to the poor prognosis of patients with pancreatic cancer and the limited effectiveness of surgery, chemotherapy, and radiation therapy, treatment regimens based on sound, tumor-specific rationales are desperately need for this disease. Topics: Aged; Animals; Biological Availability; Cyclodextrins; Humans; Male; Mice; Mice, Nude; Naphthoquinones; Pancreatic Neoplasms; Prognosis; Reverse Transcriptase Inhibitors; Transplantation, Heterologous; Tumor Cells, Cultured | 2005 |
[The mechanism of resistance to 2', 2'-difluorodeoxycytidine (gemcitabine) in a pancreatic cancer cell line].
To study the mechanism of resistance and its reversal to 2', 2'-difluorodeoxycytidine (gemcitabine) in a pancreatic cancer cell line SW1990.. Immunohistochemistry and RT-PCR techniques were used to investigate the mechanism of drug resistance. Salvicine (SAL) was used to reverse the drug resistance in a gemcitabine-resistant pancreatic cancer cell line (SW1990-GEM). RT-PCR, flow cytometry and MTT assay were employed to evaluate the effect of reversing drug resistance by salvicine.. SW1990-GEM cells showed weak expression of P-glycoprotein (P-gp) revealed by immunohistochemistry, while its parental SW1990 cells were negative. Both cell lines did not express multidrug-resistance-related protein (MRP). As compared to the parental SW1990 cells, the mRNA expression of deoxycytidine kinase (dCK) was decreased while that of ribonucleotide reductase (RR) and mdr-1 was increased. With a concentration of 4 nmol/L, at one hr and 24 hr after SAL treatment, there was no change in mdr-1 mRNA expression, and the IC(50) of gemcitabine was 121.36 micromol/L and 121.64 micromol/L, respectively. However, when the concentration of SAL was increased to 30, 60, and 90 nmol/L, there was a dose-dependent down-regulation of mdr-1 mRNA expression in SW1990-GEM cells. The accumulation of rhodamine 123 was concomitantly increased, and the IC(50) of gemcitabine was correspondingly decreased.. The resistance to gemcitabine of a pancreatic cancer cell line is due to decreased expression of dCK and increased expression of RR and mdr-1. Salvicine, only in toxic concentrations, can reverse the drug resistance by down-regulating mdr-1 gene and P-gp expression. Topics: Antimetabolites, Antineoplastic; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line, Tumor; Deoxycytidine; Down-Regulation; Drug Resistance, Neoplasm; Gemcitabine; Gene Expression Regulation, Neoplastic; Humans; Multidrug Resistance-Associated Proteins; Naphthoquinones; Pancreatic Neoplasms; RNA, Messenger | 2005 |
Critical role of extracellular signal-regulated kinase (ERK) phosphorylation in novel vitamin K analog-induced cell death.
In the present study, we show that 2-(2-hydroxyethylsulfaryl)-3-methyl-1,4-naphthoquinone, or CPD 5, is a potent growth inhibitor for pancreas cancer cell lines (ID(50): 21.4 +/- 3.8, 31.8 +/- 2.7 and 55.2 +/- 4.5 microM for MiaPaCa, Panc-1 and BxPc3, respectively). It induced protein tyrosine phosphor-ylation of hepatocyte growth factor (HGF) receptor (c-Met) or epidermal growth factor receptor (EGFR), which increased progressively to a maximum level at 30 min in Panc-1 cells. The receptor phosphorylation by CPD 5 was indicated to be functional, since these receptors were found to bind with Grb2 or SOS1 protein. CPD 5 was also suggested to induce phosphorylation of external signal-regulated kinase (ERK). EGF induced cell proliferation through ERK phosphorylation, since U0126, which is an inhibitor of ERK phosphorylation, abrogated the increase of cyclin D1 by EGF. HGF increased the amount of p27 protein, suggesting that it is associated with cell differentiation. By contrast, U0126 reduced CPD 5-induced cell death. On two-dimensional electrophoresis, we found an extra type of phospho-ERK, and this was completely and selectively abolished by U0126. These results suggest that ERK phosphorylation, especially the extra spot on two-dimensional gel, is critically associated with CPD 5-mediated cell death. Topics: Antineoplastic Agents; Cell Death; Cell Division; Cyclin D1; Epidermal Growth Factor; ErbB Receptors; Hepatocyte Growth Factor; Humans; Microfilament Proteins; Mitogen-Activated Protein Kinases; Muscle Proteins; Naphthoquinones; Pancreatic Neoplasms; Phosphorylation; Proto-Oncogene Proteins c-met; Tumor Cells, Cultured; Vitamin K | 2000 |