naphthoquinones has been researched along with Neurodegenerative-Diseases* in 3 studies
3 other study(ies) available for naphthoquinones and Neurodegenerative-Diseases
Article | Year |
---|---|
Shikonin ameliorates D-galactose-induced oxidative stress and cognitive impairment in mice via the MAPK and nuclear factor-κB signaling pathway.
Oxidative stress acts as the major causative factor for various age-associated neurodegenerative diseases, triggering cognitive and memory impairments. In the present study, the underlying neuroprotective mechanism governing how shikonin acts against D-galactose (D-gal)-induced memory impairment, neuroinflammation and neuron damage was examined. The results revealed that chronic administration of D-gal [150 mg/kg intraperitoneally (i.p.)] in mice caused cognitive and memory impairments, as determined by Morris water-maze test. Shikonin treatment, however, alleviated D-gal-induced memory impairment and reversed the D-gal-induced neural damage and apoptosis. Furthermore, western blotting and the results of morphological analysis revealed that shikonin treatments markedly reduced D-gal induced neuroinflammation through inhibition of astrocytosis as determined by glial fibrillary acidic protein (GFAP) detection, and downregulating other inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Moreover, shikonin treatment led to inhibition of the activation of nuclear factor-κB (NF-κB) and the phosphorylation of mitogen-activated protein kinases (MAPKs), preventing neurodegeneration. Hence, taken together, the results of the present study suggested that shikonin attenuated D-gal-induced memory impairment, neuroinflammation and neurodegeneration, possibly via the NF-κB/mitogen-activated protein kinase (MAPK) pathway. Our data suggest that shikonin could be a promising, endogenous and compatible antioxidant candidate for age-associated neurodegenerative diseases, including Alzheimer's disease. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cells, Cultured; Cognitive Dysfunction; Cytokines; Extracellular Signal-Regulated MAP Kinases; Galactose; Humans; Inflammation Mediators; Male; Mice; Mice, Inbred C57BL; Naphthoquinones; Neurodegenerative Diseases; Neurogenic Inflammation; NF-kappa B; Oxidative Stress; Signal Transduction | 2020 |
AUTEN-67 (Autophagy Enhancer-67) Hampers the Progression of Neurodegenerative Symptoms in a Drosophila model of Huntington's Disease.
Autophagy, a lysosome-mediated self-degradation process of eukaryotic cells, serves as a main route for the elimination of cellular damage [1-3]. Such damages include aggregated, oxidized or misfolded proteins whose accumulation can cause various neurodegenerative pathologies, including Huntington's disease (HD).. Here we examined whether enhanced autophagic activity can alleviate neurophatological features in a Drosophila model of HD (the transgenic animals express a human mutant Huntingtin protein with a long polyglutamine repeat, 128Q).. We have recently identified an autophagy-enhancing small molecule, AUTEN-67 (autophagy enhancer 67), with potent neuroprotective effects [4]. AUTEN-67 was applied to induce autophagic activity in the HD model used in this study.. We showed that AUTEN-67 treatment interferes with the progressive accumulation of ubiquitinated proteins in the brain of Drosophila transgenic for the pathological 128Q form of human Huntingtin protein. The compound significantly improved the climbing ability and moderately extended the mean life span of these flies. Furthermore, brain tissue samples from human patients diagnosed for HD displayed increased levels of the autophagy substrate SQSTM1/p62 protein, as compared with controls.. These results imply that AUTEN-67 impedes the progression of neurodegenerative symptoms characterizing HD, and that autophagy is a promising therapeutic target for treating this pathology. In humans, AUTEN-67 may have the potential to delay the onset and decrease the severity of HD. Topics: Animals; Animals, Genetically Modified; Autophagy; Brain; Disease Models, Animal; Disease Progression; Drosophila; Drosophila Proteins; Humans; Huntingtin Protein; Huntington Disease; Naphthoquinones; Neurodegenerative Diseases; Neuroprotective Agents; Peptides; Statistics, Nonparametric; Sulfonamides | 2016 |
Pin1 inhibition activates cyclin D and produces neurodegenerative pathology.
Abnormal cell cycle events are increasingly becoming important attributes of neurodegenerative pathology. Pin1 is a crucial target of neurodegeneration in relation to its functions regarding these abnormal cell cycle events in neurons. Pin1 is majorly involved in many aspects of cell cycle regulation and it has also been suggested to have a neuroprotective function against neurodegenerative pathologies. Oxidative dysregulation of Pin1 affects not only normal tau regulation, eventually causing tangle formation, but also cell cycle regulation in neurons. Presence of cell cycle proteins has been shown in many neurodegenerative diseases. Importantly, many of these proteins have physical interactions with Pin1. Hence, understanding Pin1's role in abnormal cell cycle re-entry is critical in terms of finding new approaches for the future therapeutic options treating neurodegenerative pathologies. Here, we show that inhibition of Pin1 by its selective inhibitor juglone leads to up-regulation of cyclinD1, phospho-tau, and caspase 3, producing apoptosis in cultured rat hippocampal neurons. We also observed axonal retraction with a change in sub-cellular localizations of cyclins. Therefore, Pin1 dysregulation, in relation to its role in cell cycle regulation in neurons, may have profound effects in the progression of neurodegenerative pathology, making it a possible crucial target behind many neurodegenerative diseases. Topics: Adaptor Proteins, Signal Transducing; Animals; Animals, Newborn; Apoptosis; Brain; Caspase 3; Cells, Cultured; Cyclin D; Cytotoxins; Dose-Response Relationship, Drug; Gene Expression Regulation; Indoles; Naphthoquinones; Nerve Tissue Proteins; Neurodegenerative Diseases; Neurons; Rats; Rats, Sprague-Dawley; RNA, Messenger; tau Proteins; Time Factors; Up-Regulation | 2012 |