naphthoquinones has been researched along with Neoplasm-Metastasis* in 36 studies
2 review(s) available for naphthoquinones and Neoplasm-Metastasis
Article | Year |
---|---|
Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances.
Plumbagin (PLB), a natural naphthoquinone constituent isolated from the roots of the medicinal plant Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; DNA Breaks, Double-Stranded; DNA Damage; Drug Screening Assays, Antitumor; Glutathione; Humans; Inhibitory Concentration 50; Liposomes; Mice; Mice, Inbred C57BL; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Oxidants; Oxygen; Plant Extracts; Plants, Medicinal; Proteasome Inhibitors; Reactive Oxygen Species; Superoxides | 2020 |
Pyruvate kinase M2: A simple molecule with complex functions.
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease. Topics: Adenosine Triphosphate; Atherosclerosis; Carrier Proteins; Cell Proliferation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glycolysis; Homeostasis; Humans; Inflammation; Inflammatory Bowel Diseases; Insulin; Kidney Diseases; Liver; Membrane Proteins; Metabolic Diseases; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Neuralgia; Oxidants; Oxidation-Reduction; Protein Isoforms; Sepsis; Signal Transduction; Thyroid Hormone-Binding Proteins; Thyroid Hormones; Tissue Distribution | 2019 |
3 trial(s) available for naphthoquinones and Neoplasm-Metastasis
Article | Year |
---|---|
Multicenter Phase I/II Trial of Napabucasin and Pembrolizumab in Patients with Metastatic Colorectal Cancer (EPOC1503/SCOOP Trial).
This is a phase I/II trial to assess the efficacy and safety of napabucasin plus pembrolizumab for metastatic colorectal cancer (mCRC).. Phase I was conducted to determine the recommended phase 2 dose (RP2D) in a dose escalation design of napabucasin (240 to 480 mg twice daily) with 200 mg pembrolizumab every 3 weeks. Phase II included cohort A (. A total of 55 patients were enrolled in this study. In phase I, no patients experienced dose-limiting toxicities, and napabucasin 480 mg was determined as RP2D. The irORR was 50.0% in cohort A and 10.0% in cohort B. In cohort B, the irORR was 0%, 5.3%, and 42.9% in CPS < 1, 1≤ CPS <10, and CPS ≥ 10, respectively. Patients with objective response tended to have higher tumor mutation burden than those without. Of evaluable 18 patients for CMS classification in cohort B, the irORR was 33.3%, 0%, 33.3%, and 33.3% in CMS1, CMS2, CMS3, and CMS4, respectively. The common grade 3 or higher treatment-related adverse events included fever (10.0%) in cohort A and decreased appetite (7.5%) and diarrhea (5.0%) in cohort B.. Napabucasin with pembrolizumab showed antitumor activity with acceptable toxicities for patients with MSS mCRC as well as MSI-H mCRC, although it did not meet the primary end point. The impact of related biomarkers on the efficacy warrants further investigations in the additional cohort. Topics: Adult; Aged; Antibodies, Monoclonal, Humanized; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; B7-H1 Antigen; Benzofurans; Colorectal Neoplasms; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Male; Microsatellite Instability; Middle Aged; Naphthoquinones; Neoplasm Metastasis | 2020 |
Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial.
Napabucasin is a first-in-class cancer stemness inhibitor that targets STAT3, which is a poor prognostic factor in colorectal cancer. This study aimed to test napabucasin in advanced colorectal cancer.. This study was a double-blind randomised phase 3 trial done at 68 centres in Canada, Australia, New Zealand, and Japan. Patients with advanced colorectal cancer with a good Eastern Cooperative Oncology Group (ECOG) performance status (0-1) for whom all available standard therapies had failed were eligible for the study. Patients were randomly assigned (1:1) to receive placebo or napabucasin through a web-based system with a permuted block method, after stratification by ECOG performance status, KRAS status, previous VEGF inhibitor treatment, and time from diagnosis of metastatic disease. Napabucasin 480 mg or matching placebo was taken orally every 12 h. All patients received best supportive care. The primary endpoint was overall survival assessed in an intention-to-treat analysis. This is the final analysis of this trial, which is registered at ClinicalTrials.gov, number NCT01830621.. Accrual began on April 15, 2013, and was stopped for futility on May 23, 2014, at which point 282 patients had undergone randomisation (138 assigned to the napabucasin group and 144 to the placebo group). Overall survival did not differ significantly between groups: median overall survival was 4·4 months (95% CI 3·7-4·9) in the napabucasin group and 4·8 months (4·0-5·3) in the placebo group (adjusted hazard ratio [HR] 1·13, 95% CI 0·88-1·46, p=0·34). The safety population included 136 patients in the napabucasin group and 144 patients in the placebo group. More patients who received napabucasin had any grade of treatment-related diarrhoea (108 [79%] of 136 patients), nausea (69 [51%]), and anorexia (52 [38%]) than did patients who received placebo (28 [19%] of 144 patients, 35 [24%], and 23 [16%], respectively). The most common severe (grade 3 or worse) treatment-related adverse events were abdominal pain (five [4%] patients receiving napabucasin vs five [3%] receiving placebo), diarrhoea (21 [15%] vs one [1%]), fatigue (14 [10%] vs eight [6%]), and dehydration (six [4%] vs one [1%]). 251 (89%) patients had data on pSTAT3 expression, of whom 55 (22%) had pSTAT3-positive tumours (29 in the napabucasin group, 26 in the placebo group). In a prespecified biomarker analysis of pSTAT3-positive patients, overall survival was longer in the napabucasin group than in the placebo group (median 5·1 months [95% CI 4·0-7·5] vs 3·0 months [1·7-4·1]; HR 0·41, 0·23-0·73, p=0·0025).. Although there was no difference in overall survival between groups in the overall unselected population, STAT3 might be an important target for the treatment of colorectal cancer with elevated pSTAT3 expression. Nevertheless, these results require validation.. Canadian Cancer Society Research Institute and Boston Biomedical. Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Benzofurans; Biomarkers, Tumor; Colorectal Neoplasms; Double-Blind Method; Female; Humans; Intention to Treat Analysis; Male; Middle Aged; Naphthoquinones; Neoplasm Metastasis; Prospective Studies; STAT3 Transcription Factor; Survival Analysis; Time-to-Treatment | 2018 |
A phase 2, multicenter, open-label study of sepantronium bromide (YM155) plus docetaxel in patients with stage III (unresectable) or stage IV melanoma.
Survivin is a microtubule-associated protein believed to be involved in preserving cell viability and regulating tumor cell mitosis, and it is overexpressed in many primary tumor types, including melanoma. YM155 is a first-in-class survivin suppressant. The purpose of this Phase 2 study was to evaluate the 6-month progression-free survival (PFS) rate in patients with unresectable Stage III or IV melanoma receiving a combination of YM155 plus docetaxel. The study had two parts: Part 1 established the dose of docetaxel that was tolerable in combination with YM155, and Part 2 evaluated the tolerable docetaxel dose (75 mg/m(2) ) in combination with YM155 (5 mg/m(2) per day continuous infusion over 168 h every 3 weeks). The primary endpoint was 6-month PFS rate. Secondary endpoints were objective response rate (ORR), 1-year overall survival (OS) rate, time from first response to progression, clinical benefit rate (CBR), and safety. Sixty-four patients with metastatic melanoma were treated with docetaxel and YM155. Eight patients received an initial docetaxel dose of 100 mg/m(2) and 56 patients received 75 mg/m(2) of docetaxel. Six-month PFS rate per Independent Review Committee (IRC) was 34.8% (n = 64; 95% CI, 21.3-48.6%), and per Investigator was 31.3% (n = 64; 95% CI, 19.5-43.9%). The best ORR (complete response [CR] + partial response [PR]) per IRC was 12.5% (8/64). The stable disease (SD) rate was 51.6% (33/64), leading to a CBR (CR + PR + SD) of 64.1% (41/64). Estimated probability of 1-year survival was 56.3%. YM155 is a novel agent showing modest activity when combined with docetaxel for treating patients with melanoma. YM155 was generally well tolerated, but the predetermined primary efficacy endpoint (i.e., 6-month PFS rate ≥20%) was not achieved. Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Biomarkers; Docetaxel; Drug Resistance, Neoplasm; Female; Humans; Imidazoles; Kaplan-Meier Estimate; Male; Melanoma; Middle Aged; Naphthoquinones; Neoplasm Metastasis; Neoplasm Staging; Taxoids; Treatment Outcome | 2015 |
31 other study(ies) available for naphthoquinones and Neoplasm-Metastasis
Article | Year |
---|---|
Juglone Inhibits Tumor Metastasis by Regulating Stemness Characteristics and the Epithelial-to-Mesenchymal Transition in Cancer Cells both
The stemness characteristics of cancer cells, such as self-renewal and tumorigenicity, are considered to be responsible, in part, for tumor metastasis. Epithelial-to-mesenchymal transition (EMT) plays an important role in promoting both stemness and tumor metastasis. Although the traditional medicine juglone is thought to play an anticancer role by affecting cell cycle arrest, induction of apoptosis, and immune regulation, a potential function of juglone in regulating cancer cell stemness characteristics remains unknown.. In the present study, tumor sphere formation assay and limiting dilution cell transplantation assays were performed to assess the function of juglone in regulating maintenance of cancer cell stemness characteristics. EMT of cancer cells was assessed by western blot and transwell assay. Data gathered indicates juglone inhibits stemness characteristics and EMT in cancer cells. Furthermore, we verified that metastasis was suppressed by juglone treatment. We also observed that these effects were, in part, achieved by inhibiting Peptidyl-prolyl. These results indicate that juglone inhibits maintenance of stemness characteristics and metastasis in cancer cells. Topics: Apoptosis; Blotting, Western; Epithelial-Mesenchymal Transition; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Neoplastic Stem Cells | 2023 |
Plumbagin Induces Cytotoxicity
We investigated the cytotoxic effects of plumbagin on metastatic retinoblastoma, using the highly metastatic cell line Y79.. Effect of plumbagin on cell growth was assessed with water-soluble tetrazolium 1 (WST-1) cell proliferation assay and automated hemocytometry with trypan blue-exclusion assay. Cell death was studied with acridine orange/ethidium bromide live-dead assay and annexin-V-fluorescein isothiocyanate/propidium iodide microscopy. Loss of mitochondrial membrane potential was studied with JC-10 dye and caspase activation was investigated using CellEvent Caspase-3/7 Green detection reagent.. Plumbagin highly significantly reduced the growth of Y79 cells treated for 24 h with 2.5 μM or more. Plumbagin also induced significantly high levels of cell death which was associated with loss of mitochondrial membrane potential and caspase activation.. At very low concentration (2.5 μM), plumbagin potently induced cytotoxicity in metastatic retinoblastoma cells via loss of mitochondrial membrane potential and caspase activation. Topics: Antineoplastic Agents, Phytogenic; Caspases; Cell Death; Cell Line, Tumor; Cell Proliferation; Humans; Membrane Potential, Mitochondrial; Mitochondria; Naphthoquinones; Neoplasm Metastasis; Retinal Neoplasms; Retinoblastoma | 2021 |
Rubioncolin C, a natural naphthohydroquinone dimer isolated from Rubia yunnanensis, inhibits the proliferation and metastasis by inducing ROS-mediated apoptotic and autophagic cell death in triple-negative breast cancer cells.
Rubia yunnanensis Diels is a traditional Chinese medicine that has diverse pharmacological activities, including antituberculosis, antirheumatism and anticancers. Rubioncolin C (RC), a natural naphthohydroquinone dimer isolated from the roots and rhizomes of R. yunnanensis Diels, has shown potent antitumor activity. However, the antitumor activity and its potential mechanism of RC in triple-negative breast cancer (TNBC) cell lines remained unclear.. This study was aim to investigate the anti-proliferation and anti-metastasis activity as well as the potential mechanism of RC on triple-negative breast cancer cells in vitro and in vivo.. The sulforhodamine B assay, colony formation assay and cell cycle analysis were used to determine the anti-proliferative activity of RC on TNBC. The anti-metastatic activity in vitro of RC was detected through the scratch wound assay, cell migration and invasion assays and gelatin zymography. The flow cytometry, JC-1, GFP-LC3B plasmid transfection, MDC, Lysotracker red and Carboxy-H. In the present study, RC suppressed the proliferation of TNBC cells in a time- and dose-dependent manner via regulating cell cycle. Further experiments showed that RC inhibited the migration and invasion of TNBC cells by downregulating MMPs and inhibiting EMT. Moreover, we demonstrated that RC induced obviously apoptotic and autophagic cell death, activated MAPK signaling pathway and inhibited mTOR/Akt/p70S6K and NF-κB signaling pathways. Furthermore, the excessive ROS was produced after treatment with RC. The antioxygen NAC and GSH could rescue the cell viability and reestablish the ability of cell metastasis, and inhibit the RC-induced apoptosis and autophagy. In a mice lung metastasis model of breast cancer, RC inhibited lung metastasis, and induced autophagy and apoptosis.. These findings clarified the antitumor mechanism of RC on TNBC cell lines and suggested that RC is a key active ingredient for the cancer treatment of R. yunnanensis, which would help RC develop as a new potential chemotherapeutic agent for TNBC treatment. Topics: Animals; Antineoplastic Agents, Phytogenic; Autophagy; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Female; Humans; Mice; Mice, Inbred BALB C; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Reactive Oxygen Species; Rubia; Time Factors; Triple Negative Breast Neoplasms | 2021 |
Modulation of Nqo1 activity intercepts anoikis resistance and reduces metastatic potential of hepatocellular carcinoma.
The processing of intracellular reactive oxygen species (ROS) by nuclear factor erythroid-derived 2-like 2 (Nrf2) and NADPH quinone oxidoreductase 1 (Nqo1) is important for tumor metastasis. However, the clinical and biological significance of Nrf2/Nqo1 expression in hepatocellular carcinoma (HCC) remains unclear. We aimed to clarify the clinical importance of Nrf2/Nqo1 expression in HCC and evaluate the association of Nrf2/Nqo1 expression with HCC metastasis. We also evaluated the impact of Nqo1 modulation on HCC metastatic potential. We used spheroids derived from HCC cell lines. In anchorage-independent culture, HCC cells showed increased ROS, leading to the upregulation of Nrf2/Nqo1. Futile stimulation of Nqo1 by β-lapachone induces excessive oxidative stress and dramatically increased anoikis sensitivity, finally diminishing the spheroid formation ability, which was far stronger than depletion of Nqo1. We analyzed 117 cases of primary HCC who underwent curative resection. Overexpression of Nrf2/Nqo1 in primary HCC was associated with tumor size, high α-fetoprotein, and des-γ-carboxy-prothrombin levels. Overexpression of Nrf2/Nqo1 was also associated with multiple intrahepatic recurrences (P = .0073) and was an independent risk factor for poor prognosis (P = .0031). NADPH quinone oxidoreductase 1 plays an important role in anchorage-independent survival, which is essential for survival for circulation and distant metastasis of HCC cells. These results suggest that targeting Nqo1 activity could be a potential strategy for HCC adjuvant therapy. Topics: Aged; Anoikis; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Female; Gene Expression Regulation, Neoplastic; Humans; Liver Neoplasms; Male; Middle Aged; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Neoplasm Metastasis; Neoplasm Recurrence, Local; NF-E2-Related Factor 2; Oxidative Stress; Reactive Oxygen Species | 2020 |
Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway.
Melanoma is the most dangerous form of skin cancer with a very poor prognosis. Melanoma develops when unrepaired DNA damage causes to skin cells to multiply and form malignant tumors. The current therapy is limited by the highly ability of this disease to metastasize rapidly. Plumbagin is a naphthoquinone (5-hydroxy-2-methyl-1, 4-naphthoquinone), isolated from the roots of medicinal plant Plumbago zeylanica, and it is widely present in Lawsonia inermis L. It has been shown that plumbagin has an anti-proliferative and anti-invasive activities in various cancer cell lines; however, the anti-cancer and anti-metastatic effects of plumbagin are largely unknown against melanoma cells. In this study, we evaluated the effect of plumbagin on B16F10 murine melanoma cells . Plumbagin decreased B16F10 cell viability as well as the cell migration, adhesion, and invasion. The molecular mechanism was studied, and plumbagin downregulated genes relevant in MAPK pathway, matrix metalloproteinases (MMP's), and cell adhesion. Furthermore, plumbagin elevated the expression of apoptosis and tumors suppressor genes, and genes significant in reactive oxygen species (ROS) response. Taken together, our findings suggest that plumbagin has an anti-invasion and anti-metastasis effect on melanoma cancer cells by acting on MAPK pathway and its related genes. Topics: Animals; Breast Neoplasms; Cell Adhesion; Cell Line, Tumor; Cell Proliferation; Cell Survival; Female; Gene Expression Regulation, Neoplastic; Humans; MAP Kinase Signaling System; Melanoma; Melanoma, Experimental; Mice; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Oligonucleotide Array Sequence Analysis; Plant Extracts; Signal Transduction; Wound Healing | 2020 |
Targeted juglone blocks the invasion and metastasis of HPV-positive cervical cancer cells.
Human papillomaviruses (HPVs), for instance, HPV 16 and HPV 18, are concerned associated with cervical cancer. Thus, it is essential to suppress HPVs-in HPV-positive cervical cancer for treating cervical cancer. The purpose of this study was to explore the proposed molecular mechanisms, which that underlies the antintumor potential of juglone to treat of HPV-positive on cervical cancer cells. The results showed that juglone suppressed HPV-positive cell growth in a dose- and time-dependent way. In addition, cell invasion and metastasis were also inhibited by juglone. Nevertheless, when pin 1 was knocked down in HPV-positive cells, cell proliferation, invasion and metastasis were reduced. This study was designed to acquire an understanding of the mechanism of invasion and metastasis in HPV-positive cells suppressed by juglone. It provides evidence of the advantageous use of juglone in the future. Topics: Cell Line, Tumor; Cell Proliferation; Female; HeLa Cells; Humans; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Papillomaviridae; Papillomavirus Infections; Uterine Cervical Neoplasms | 2019 |
Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance.
Programmed necrosis, necroptosis, is considered to be a highly immunogenic activity, often mediated via the release of damage-associated molecular patterns (DAMPs). Interestingly, enhanced macroautophagic/autophagic activity is often found to be accompanied by necroptosis. However, the possible role of autophagy in the immunogenicity of necroptotic death remains largely obscure. In this study, we investigated the possible mechanistic correlation between phytochemical shikonin-induced autophagy and the shikonin-induced necroptosis for tumor immunogenicity. We show that shikonin can instigate RIPK1 (receptor [TNFRSF]-interacting serine-threonine kinase 1)- and RIPK3 (receptor-interacting serine-threonine kinase 3)-dependent necroptosis that is accompanied by enhanced autophagy. Shikonin-induced autophagy can directly contribute to DAMP upregulation. Counterintuitively, among the released and ectoDAMPs, only the latter were shown to be able to activate the cocultured dendritic cells (DCs). Interruption of autophagic flux via chloroquine further upregulated ectoDAMP activity and resultant DC activation. For potential clinical application, DC vaccine preparations treated with tumor cells that were already pretreated with chloroquine and shikonin further enhanced the antimetastatic activity of 4T1 tumors and reduced the effective dosage of doxorubicin. The enhanced immunogenicity and vaccine efficacy obtained via shikonin and chloroquine cotreatment of tumor cells may thus constitute a compelling strategy for developing cancer vaccines via the use of a combinational drug treatment. Topics: Alarmins; Animals; Apoptosis; Autophagy; Cell Communication; Cell Line, Tumor; Chloroquine; Dendritic Cells; Female; Immunization; Immunologic Surveillance; Mice, Inbred BALB C; Models, Biological; Naphthoquinones; Necrosis; Neoplasm Metastasis; Up-Regulation | 2018 |
Cypripedin diminishes an epithelial-to-mesenchymal transition in non-small cell lung cancer cells through suppression of Akt/GSK-3β signalling.
Lung cancer appears to have the highest rate of mortality among cancers due to its metastasis capability. To achieve metastasis, cancer cells acquire the ability to undergo a switch from epithelial to mesenchymal behaviour, termed the epithelial-to-mesenchymal transition (EMT), which is associated with poor clinical outcomes. Drug discovery attempts have been made to find potent compounds that will suppress EMT. Cypripedin, a phenanthrenequinone isolated from Thai orchid, Dendrobium densiflorum, exhibits diverse pharmacological activities. In this study, we found that cypripedin attenuated typical mesenchymal phenotypes, including migratory behaviour, of non-small cell lung cancer H460 cells, with a significant reduction of actin stress fibres and focal adhesion and with weakened anchorage-independent growth. Western blot analysis revealed that the negative activity of this compound on EMT was a result of the down-regulation of the EMT markers Slug, N-Cadherin and Vimentin, which was due to ATP-dependent tyrosine kinase (Akt) inactivation. As a consequence, the increase in the Slug degradation rate via a ubiquitin-proteasomal mechanism was encouraged. The observation in another lung cancer H23 cell line also supported this finding, indicating that cypripedin exhibits a promising pharmacological action on lung cancer metastasis that could provide scientific evidence for the further development of this compound. Topics: Carcinoma, Non-Small-Cell Lung; Cell Adhesion; Cell Movement; Cell Proliferation; Cell Survival; Down-Regulation; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3 beta; Humans; Lung Neoplasms; Naphthoquinones; Neoplasm Metastasis; Proto-Oncogene Proteins c-akt; Signal Transduction; Tumor Cells, Cultured | 2018 |
Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells.
Osteosarcoma is the most common bone cancer. Despite advances, molecular mechanisms associated with osteosarcoma have not been fully understood. Hence, an effective treatment for osteosarcoma has yet to be developed. Even though signal transducer and activator of transcription3 (STAT3) has been implicated, its role in pathogenesis of osteosarcoma is not fully determined. In this study, we investigated the antitumor effect of napabucasin (NP) (BBI608), an inhibitor of STAT3 on osteosarcoma in vitro and in vivo and studied the underlying molecular mechanism.. Cell viability, colony formation, apoptosis, tumor growth and metastasis assays were performed to examine the effect of NP on osteosarcoma in vitro and in vivo. Real-time RT-PCR, western analysis, immunofluorescence and reporter assays were used to monitor the expression and activity of proteins and underlying molecular pathways. Protein synthesis, co-immunoprecipitation and CAP binding assays were carried out to understand NP-mediated mechanism of actions in osteosarcoma cells.. Our results show that NP treatment decreases cell viability and induces apoptosis in several osteosarcoma cell lines. NP treatment suppresses both expression and phosphorylation of STAT3 in addition to blocking STAT3-mediated transcription and downstream target proteins in osteosarcoma cells. Furthermore, NP inhibits protein synthesis through regulation of the eukaryotic initiation factor 4E (eIF4E) and eIF4E-binding protein 1 (4E-BP1). NP also inhibits the progression of osteosarcoma tumors and metastasis in vivo in an orthotopic tibial model of osteosarcoma.. Taken together, our investigation reveals that NP acts through a novel mechanism and inhibits osteosarcoma growth and metastasis, and could be investigated clinically for treating osteosarcoma patients alone or in combination with other drugs. Topics: Animals; Apoptosis; Benzofurans; Bone Neoplasms; Cell Line, Tumor; Female; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Neoplasm Metastasis; Osteosarcoma; Protein Synthesis Inhibitors; Random Allocation; STAT3 Transcription Factor; Xenograft Model Antitumor Assays | 2018 |
Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways.
Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF-β1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF-β1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF-β1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF-β1-induced epithelial-to-mesenchymal transition. Topics: Biomarkers, Tumor; Cadherins; Cell Death; Cell Line, Tumor; Cell Movement; Epithelial-Mesenchymal Transition; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation, Neoplastic; Humans; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Osteosarcoma; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Smad Proteins; Transcription Factors; Transforming Growth Factor beta1; Vimentin | 2018 |
Inhibition of Pyruvate Kinase M2 Markedly Reduces Chemoresistance of Advanced Bladder Cancer to Cisplatin.
Chemoresistance to cisplatin is a principal cause of treatment failure and mortality of advanced bladder cancer (BC). The underlying mechanisms remain unclear, which hinders the development of preventive strategies. Recent data indicate that pyruvate kinase M2 (PKM2), a glycolytic enzyme for Warburg effect, is strongly upregulated in BC. This study explores the role of PKM2 in chemoresistance and whether inhibiting PKM2 augments the chemosensitivity to cisplatin and reduces BC growth and progression. We found that Shikonin binds PKM2 and inhibits BC cell survival in a dose-dependent but pyruvate kinase activity-independent manner. Down-regulation of PKM2 by shRNA blunts cellular responses to shikonin but enhances the responses to cisplatin. Shikonin and cisplatin together exhibit significantly greater inhibition of proliferation and apoptosis than when used alone. Induced cisplatin-resistance is strongly associated with PKM2 overexpression, and cisplatin-resistant cells respond sensitively to shikonin. In syngeneic mice, shikonin and cisplatin together, but not as single-agents, markedly reduces BC growth and metastasis. Based on these data, we conclude that PKM2 overexpression is a key mechanism of chemoresistance of advanced BC to cisplatin. Inhibition of PKM2 via RNAi or chemical inhibitors may be a highly effective approach to overcome chemoresistance and improve the outcome of advanced BC. Topics: Actins; Aged, 80 and over; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Cisplatin; Down-Regulation; Drug Resistance, Neoplasm; Drug Synergism; Female; Humans; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Staging; Polymerization; Protein Kinase Inhibitors; Pyruvate Kinase; RNA, Small Interfering; Up-Regulation; Urinary Bladder Neoplasms | 2017 |
β-Lapachone suppresses the lung metastasis of melanoma via the MAPK signaling pathway.
β-Lapachone is a natural quinone compound from Lapacho trees, which has various pharmacological effects such as anti-bacterial, anti-fungal, anti-viral, and anti-inflammatory activities. However, the effect of β-lapachone on metastasis of melanoma cells is unclear. In this study, β-lapachone reduced cell viability of metastatic melanoma cancer cell lines B16F10 and B16BL6 through induction of apoptosis via the mitogen-activated protein kinase (MAPK) pathway. Additionally, flow cytometry results showed that β-lapachone increased DNA content in the G0/G1 phase of the cell cycle. Analysis of the mechanisms of these events indicated that β-lapachone regulated the expression of Bcl-2, Bcl-xL, and Bax, resulting in the activation of caspase-3, -8, -9, and poly-ADP-ribose polymerase (PARP). Moreover, the β-lapachone-administered group showed significantly decreased lung metastasis in the experimental mouse model. In conclusion, our study demonstrates the inhibitory effect of β-lapachone on lung metastasis of melanoma cells and provides a new insight into the role of β-lapachone as a potential antitumor agent. Topics: Animals; Female; Humans; Lung Neoplasms; MAP Kinase Signaling System; Melanoma; Mice; Mice, Inbred C57BL; Naphthoquinones; Neoplasm Metastasis | 2017 |
SIRT2 mediated antitumor effects of shikonin on metastatic colorectal cancer.
SIRT2 is involved in the development of a variety of cancers. Shikonin is a natural compound that is known to have antitumor effects. This study aims to assess the effects of shikonin on the development and metastatic progression of colorectal cancer (CRC) through regulation of SIRT2 expression and whether this effect is related to the phosphorylation of extracellular signal-regulated kinases (ERKs). The results demonstrated that SIRT2 is downregulated in CRC biopsy samples (n=31) compared with the adjacent non-cancerous tissues (ANCT, n=26). Furthermore, CRC metastases were positive for SIRT2 despite a lack of expression in the primary tumor. In addition, data from an in vitro assay revealed that overexpression of SIRT2 inhibited the proliferation and metastatic progression of SW480 cells while blocking of SIRT2 expression induced the proliferation and metastatic progression of HT29 cells. Shikonin inhibited the viability, migration and invasion of SW480 cells and it also inhibited the tumor growth in the nude mice model; while AGK2 (a specific inhibitor of SIRT2) reversed these effects. Epidermal growth factor (EGF, an activator of ERK) and ERK-overexpression inhibited the effects of shikonin on SIRT2 expression, proliferation and metastasis in SW480 cells. However, this proliferative effect of EGF was reversed by SIRT2 overexpression. In conclusion, these results suggest that SIRT2 is a new therapeutic target for the treatment of CRC. The antitumor effects of shikonin on CRC seem to be mediated by SIRT2 upregulation via phospho-ERK inhibition. Topics: Animals; Antineoplastic Agents; Carcinogenesis; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Colorectal Neoplasms; Down-Regulation; Extracellular Signal-Regulated MAP Kinases; Female; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Middle Aged; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Sirtuin 2 | 2017 |
Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells.
Juglone, a natural component, is shown to have cytotoxic and apoptotic effects in several cancer cell lines. However, little is known about its effects on invasion and metastasis. In this study, we aimed to determine the antimetastatic effect of juglone in the BxPC-3 and PANC-1 pancreatic cancer cell lines. Cytotoxic effect of juglone was evaluated by using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) test. The cells were treated with juglone at Topics: Antineoplastic Agents; Cell Adhesion; Cell Line, Tumor; Cell Survival; Gene Expression; Humans; Metalloendopeptidases; Naphthoquinones; Neoplasm Metastasis; Neovascularization, Pathologic; Pancreatic Neoplasms | 2016 |
Suppression of cancer relapse and metastasis by inhibiting cancer stemness.
Partial or even complete cancer regression can be achieved in some patients with current cancer treatments. However, such initial responses are almost always followed by relapse, with the recurrent cancer being resistant to further treatments. The discovery of therapeutic approaches that counteract relapse is, therefore, essential for advancing cancer medicine. Cancer cells are extremely heterogeneous, even in each individual patient, in terms of their malignant potential, drug sensitivity, and their potential to metastasize and cause relapse. Indeed, hypermalignant cancer cells, termed cancer stem cells or stemness-high cancer cells, that are highly tumorigenic and metastatic have been isolated from cancer patients with a variety of tumor types. Moreover, such stemness-high cancer cells are resistant to conventional chemotherapy and radiation. Here we show that BBI608, a small molecule identified by its ability to inhibit gene transcription driven by Stat3 and cancer stemness properties, can inhibit stemness gene expression and block spherogenesis of or kill stemness-high cancer cells isolated from a variety of cancer types. Moreover, cancer relapse and metastasis were effectively blocked by BBI608 in mice. These data demonstrate targeting cancer stemness as a novel approach to develop the next generation of cancer therapeutics to suppress cancer relapse and metastasis. Topics: Animals; Antineoplastic Agents; Benzofurans; Cell Line, Tumor; Dose-Response Relationship, Drug; Heterografts; Inhibitory Concentration 50; Mice; Naphthoquinones; Neoplasm Metastasis; Neoplastic Stem Cells; Secondary Prevention | 2015 |
Inhibition of Survivin with YM155 Induces Durable Tumor Response in Anaplastic Thyroid Cancer.
Anaplastic thyroid cancer (ATC) is a rare but lethal malignancy without any effective therapy. The aim of this study is to use a high-throughput drug library screening to identify a novel therapeutic agent that targets dysregulated genes/pathways in ATC.. We performed quantitative high-throughput screening (qHTS) in ATC cell lines using a compound library of 3,282 drugs. Dysregulated genes in ATC were analyzed using genome-wide expression analysis and immunohistochemistry in human ATC tissue samples and ATC cell lines. In vitro and in vivo studies were performed for determining drug activity, effectiveness of targeting, and the mechanism of action.. qHTS identified 100 active compounds in three ATC cell lines. One of the most active agents was the first-in-class survivin inhibitor YM155. Genome-wide expression analysis and immunohistochemistry showed overexpression of survivin in human ATC tissue samples, and survivin was highly expressed in all ATC cell lines tested. YM155 significantly inhibited ATC cellular proliferation. Mechanistically, YM155 inhibited survivin expression in ATC cells. Furthermore, YM155 treatment reduced claspin expression, which was associated with S-phase arrest in ATC cells. In vivo, YM155 significantly inhibited growth and metastases and prolonged survival.. Our data show that YM155 is a promising anticancer agent for ATC and that its target, survivin, is overexpressed in ATC. Our findings support the use of YM155 in clinical trials as a therapeutic option in advanced and metastatic ATC. Topics: Adaptor Proteins, Signal Transducing; Animals; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Genome-Wide Association Study; HeLa Cells; Humans; Imidazoles; Immunohistochemistry; Inhibitor of Apoptosis Proteins; Inhibitory Concentration 50; Mice; Naphthoquinones; Neoplasm Metastasis; RNA, Small Interfering; S Phase; Survivin; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Treatment Outcome | 2015 |
A combination of YM-155, a small molecule survivin inhibitor, and IL-2 potently suppresses renal cell carcinoma in murine model.
YM155, a small molecule inhibitor of the antiapoptotic protein survivin, has been developed as a potential anti-cancer drug. We investigated a combination therapy of YM155 and interleukin-2 (IL-2) in a mouse model of renal cell carcinoma (RCC). YM155 caused cell cycle arrest and apoptosis in renal cancer (RENCA) cells. Next, luciferase-expressing RENCA cells were implanted in the left kidney and the lung of BALB/c mice to develop RCC metastatic model. In this orthotopic renal and metastatic lung tumors models, YM155 and IL-2 additively decreased tumor weight, lung metastasis, and luciferin-stained tumor images. Also, the combination significantly suppressed regulatory T cells and myeloid-derived suppressor cells compared with single agent treatment. We suggest that a combination of YM155 and IL-2 can be tested as a potential therapeutic modality in patients with RCC. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Renal Cell; CD4-Positive T-Lymphocytes; Cell Line, Tumor; Cell Proliferation; Cell Separation; Disease Models, Animal; Female; Flow Cytometry; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Interleukin-2; Kidney Neoplasms; Mice; Mice, Inbred BALB C; Naphthoquinones; Neoplasm Metastasis; Neoplasm Transplantation; Survivin; T-Lymphocytes, Regulatory | 2015 |
Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.
Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. Topics: Adult; Animals; Autophagy; Cancer Vaccines; Cell Differentiation; Cell Line, Tumor; Dendritic Cells; Female; Humans; Male; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Middle Aged; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Sirolimus; T-Lymphocytes, Regulatory; Th1 Cells; Th17 Cells; Young Adult | 2015 |
Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating.
Resistant cancer phenotype is a key obstacle in the successful therapy of prostate cancer. The primary aim of our study was to explore resistance mechanisms in the advanced type of prostate cancer cells (PC-3) and to clarify the role of autophagy in these processes. We performed time-lapse experiment (48 hours) with ROS generating plumbagin by using multimodal holographic microscope. Furthermore, we also performed the flow-cytometric analysis and the qRT-PCR gene expression analysis at 12 selected time points. TEM and confocal microscopy were used to verify the results. We found out that autophagy (namely mitophagy) is an important resistance mechanism. The major ROS producing mitochondria were coated by an autophagic membrane derived from endoplasmic reticulum and degraded. According to our results, increasing ROS resistance may be also accompanied by increased average cell size and polyploidization, which seems to be key resistance mechanism when connected with an escape from senescence. Many different types of cell-cell interactions were recorded including entosis, vesicular transfer, eating of dead or dying cells, and engulfment and cannibalism of living cells. Entosis was disclosed as a possible mechanism of polyploidization and enabled the long-term survival of cancer cells. Significantly reduced cell motility was found after the plumbagin treatment. We also found an extensive induction of pluripotency genes expression (NANOG, SOX2, and POU5F1) at the time-point of 20 hours. We suppose, that overexpression of pluripotency genes in the portion of prostate tumour cell population exposed to ROS leads to higher developmental plasticity and capability to faster respond to changes in the extracellular environment that could ultimately lead to an alteration of cell fate. Topics: Autophagy; Cell Communication; Cell Line, Tumor; Cell Self Renewal; Cell Size; Cell Survival; Endoplasmic Reticulum; Entosis; Flow Cytometry; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Inhibitory Concentration 50; Male; Mitophagy; Naphthoquinones; Neoplasm Metastasis; Oxidative Stress; Principal Component Analysis; Prostatic Neoplasms; Reactive Oxygen Species; Time-Lapse Imaging | 2015 |
2-Methoxy-1,4-Naphthoquinone (MNQ) suppresses the invasion and migration of a human metastatic breast cancer cell line (MDA-MB-231).
Metastasis contributes to the escalating mortality rate among cancer patients worldwide. The search for novel and more effective anti-metastatic agent is crucial owing to the lack of anticancer drugs that can successfully combat metastasis. Hence, this study aims to examine the effects of 2-Methoxy-1,4-Naphthoquinone (MNQ) towards the metastasis of MDA-MB-231 cells. In invasion assays, the number of cells permeating across a Matrigel barrier was found to be decreased in a dose-dependent manner upon treatment with MNQ (0-7.5 μM). In wound-healing migration assays, MNQ exhibited dose-dependent inhibition of cell migration in which significant reduction in the zone of closure was observed as compared to untreated controls. Furthermore, the proteolytic activity of a pivotal metastatic mediator, matrix metalloproteinase-9 (MMP-9) was also downregulated by MNQ as determined by gelatin zymography. This study reports for the first time, the ability of MNQ to inhibit the invasion and migration characteristics of a highly metastatic MDA-MB-231 cancer cell line. Topics: Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Collagen; Dose-Response Relationship, Drug; Down-Regulation; Drug Combinations; Female; Humans; Laminin; Matrix Metalloproteinase 9; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Proteoglycans | 2014 |
Alteronol inhibits the invasion and metastasis of B16F10 and B16F1 melanoma cells in vitro and in vivo.
The purpose of this study is to evaluate the anti-metastatic effects of alteronol on melanoma B16F10 and B16F1 cells in vitro and in vivo.. Melanoma B16F1 and B16F10 cells were cultured in vitro. Cell proliferation was analyzed via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The cell migration and invasion were evaluated via wound healing and transwell chamber assays. The activity of matrix metalloproteinase 2 (MMP-2) in culture supernatants was assessed via gelatin zymography. The expression of MMP-2 and TIMP-2 were detected via enzyme-linked immunosorbent assay (ELISA) assay. The anti-metastatic ability in vivo was detected through experimental lung metastasis.. The data indicate that alteronol can inhibit the proliferation, invasion, and migration of B16F1 and B16F10 cells in vitro and in vivo, decrease the activity and expression of MMP-2, enhance the expression level of Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), and inhibit the experimental lung metastasis of B16F1 and B16F10 cells.. Although alteronol and taxol are obtained from the same source, these substances do not destroy the rare resource; the mechanisms of them on tumor growth inhibition are different. Conversely, alteronol treatment had lesser effects on normal cells revealing for a selective property and a strong competitive advantage. Topics: Animals; Cell Line, Tumor; Cell Movement; Cell Survival; Enzyme Activation; Lung Neoplasms; Matrix Metalloproteinase 2; Melanoma; Mice; Molecular Structure; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis | 2014 |
Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways.
Metastasis is one of the most important factors related to prostate cancer therapeutic efficacy. In previous studies, shikonin, an active naphthoquinone isolated from the Chinese medicine Zi Cao, has various anticancer activities both in vivo and in vitro. However, the mechanisms underlying shikonin's anticancer activity are not fully elucidated on prostate cancer cells. In the present study, we aimed to investigate the potential effects of shikonin on prostate cancer cells and the underlying mechanisms by which shikonin exerted its actions. With cell proliferation, flow cytometric cell cycle, migration and invasion assays, we found that shikonin potently suppressed PC-3 and DU145 cell growth by cell cycle arrest at the G2 phase and metastasis in a dose-dependent manner. Mechanically, we presented that shikonin could suppress the metastasis of PC-3 and DU145 cells via inhibiting the matrix metalloproteinase-2 (MMP-2) and MMP-9 expression and activation. In addition, shikonin significantly decreased the phosphorylation of AKT and mTOR in a dose-dependent manner while it induced extracellular signal-regulated kinase (ERK), p38 mitogen activated protein kinase (MAPK) and c-Jun N terminal kinase (JNK) phosphorylation. Further investigation of the underlying mechanism revealed that shikonin also induced the production of reactive oxygen species (ROS) that was reversed by the ROS scavenger dithiothreitol (DTT). Additionally, DTT reversed the shikonin induced activation of ERK1/2, thereby maintaining MMP-2 and MMP-9 expression and restoring cell metastasis. Together, shikonin inhibits aggressive prostate cancer cell migration and invasion by reducing MMP-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways and presents a potential novel alternative agent for the treatment of human prostate cancer. Topics: Cell Cycle Checkpoints; Cell Line, Tumor; Cell Movement; Cell Proliferation; G2 Phase; Gene Expression Regulation, Neoplastic; Humans; JNK Mitogen-Activated Protein Kinases; Male; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Naphthoquinones; Neoplasm Metastasis; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; TOR Serine-Threonine Kinases | 2014 |
Shikonin suppresses the migratory ability of hepatocellular carcinoma cells.
Shikonin is a traditional Oriental medical herb extracted from Lithospermum erythrorhizon. Many studies have shown that shikonin possesses anticancer ability against many different cancers, including hepatocellular carcinoma (HCC). Recently, tumor metastasis has been become an important clinical obstacle. However, the effect of shikonin on metastasis by HCC is unknown. The 50% inhibitory concentration (IC50) of shikonin on HCC cells was determined by an MTT assay and the xCELLigence biosensor system. The migratory ability of HCC cells was detected by a transwell migration assay and the xCELLigence biosensor system. Matrix metalloproteinase-2 and -9 (MMP-2 and -9) expression levels were determined by Western blotting, and the activities of MMP-2 and -9 were determined by gelatin zymography. We found that IC50 values of HepJ5 and Mahlavu cells to shikonin treatment were around 2 μM. Exposure to a low dose of shikonin (0-0.4 μM) did not influence the survival of HCC cells. Interestingly, exposure to a low dose of shikonin inhibited the migratory ability on HepJ5 and Mahlavu cells. To further dissect the mechanism, we found that treatment with a low dose of shikonin reduced the activities and expression levels of MMP-2 and -9, which were correlated with the decreased cell migratory ability of HCC cells. In addition, we found a decrease of vimnetin expression, but no influence on the expression levels of N-cadherin, TWIST, or GRP78. In mechanism dissecting, we found that shikonin treatment may suppress the phosphorylation of AKT and then reduce the NF-κB (NF = nuclear factor) levels, but has no influence on the levels of c-Fos and c-Jun. Furthermore, we also found that shikonin may also reduce the phosphorylation of IκB. We concluded that a low dose of shikonin can suppress the migratory ability of HCC cells through downregulation of expression levels of vimentin and MMP-2 and -9. Our findings suggest that shikonin may be a new compound to prevent the migration of HCC cells. Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Drugs, Chinese Herbal; Endoplasmic Reticulum Chaperone BiP; Gene Expression Regulation, Neoplastic; Humans; Lithospermum; Liver Neoplasms; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Naphthoquinones; Neoplasm Metastasis | 2013 |
Response of Merkel cell polyomavirus-positive merkel cell carcinoma xenografts to a survivin inhibitor.
Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer associated with high mortality. Merkel cell polyomavirus (MCV), discovered in 2008, is associated with ~80% of MCC. The MCV large tumor (LT) oncoprotein upregulates the cellular oncoprotein survivin through its conserved retinoblastoma protein-binding motif. We confirm here that YM155, a survivin suppressor, is cytotoxic to MCV-positive MCC cells in vitro at nanomolar levels. Mouse survival was significantly improved for NOD-Scid-Gamma mice treated with YM155 in a dose and duration dependent manner for 3 of 4 MCV-positive MCC xenografts. One MCV-positive MCC xenograft (MS-1) failed to significantly respond to YM155, which corresponds with in vitro dose-response activity. Combination treatment of YM155 with other chemotherapeutics resulted in additive but not synergistic cell killing of MCC cell lines in vitro. These results suggest that survivin targeting is a promising therapeutic approach for most but not all MCV-positive MCCs. Topics: Animals; Antineoplastic Agents; Carcinoma, Merkel Cell; Cell Line, Tumor; Cell Survival; Cell Transformation, Viral; Disease Models, Animal; Female; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Merkel cell polyomavirus; Mice; Naphthoquinones; Neoplasm Metastasis; Polyomavirus Infections; Survivin; Tumor Burden; Tumor Virus Infections; Xenograft Model Antitumor Assays | 2013 |
Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model.
We present here first time that Plumbagin (PL), a medicinal plant-derived 1,4-naphthoquinone, inhibits the growth and metastasis of human prostate cancer (PCa) cells in an orthotopic xenograft mouse model. In this study, human PCa PC-3M-luciferase cells (2 × 10(6)) were injected into the prostate of athymic nude mice. Three days post cell implantation, mice were treated with PL (2 mg/kg body wt. i.p. five days in a week) for 8 weeks. Growth and metastasis of PC-3M-luciferase cells was examined weekly by bioluminescence imaging of live mice. PL-treatment significantly (p = 0.0008) inhibited the growth of orthotopic xenograft tumors. Results demonstrated a significant inhibition of metastasis into liver (p = 0.037), but inhibition of metastasis into the lungs (p = 0.60) and lymph nodes (p = 0.27) was not observed to be significant. These results were further confirmed by histopathology of these organs. Results of histopathology demonstrated a significant inhibition of metastasis into lymph nodes (p = 0.034) and lungs (p = 0.028), and a trend to significance in liver (p = 0.075). None of the mice in the PL-treatment group showed PCa metastasis into the liver, but these mice had small metastasis foci into the lymph nodes and lungs. However, control mice had large metastatic foci into the lymph nodes, lungs, and liver. PL-caused inhibition of the growth and metastasis of PC-3M cells accompanies inhibition of the expression of: 1) PKCε, pStat3Tyr705, and pStat3Ser727, 2) Stat3 downstream target genes (survivin and Bcl(xL)), 3) proliferative markers Ki-67 and PCNA, 4) metastatic marker MMP9, MMP2, and uPA, and 5) angiogenesis markers CD31 and VEGF. Taken together, these results suggest that PL inhibits tumor growth and metastasis of human PCa PC3-M-luciferase cells, which could be used as a therapeutic agent for the prevention and treatment of human PCa. Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Humans; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Nude; Naphthoquinones; Neoplasm Metastasis; Nitric Oxide Synthase Type II; Plumbaginaceae; Prostate; Prostatic Neoplasms; Protein Kinase C; STAT3 Transcription Factor | 2013 |
YM155, a selective survivin suppressant, inhibits tumor spread and prolongs survival in a spontaneous metastatic model of human triple negative breast cancer.
Metastatic triple negative breast cancer [TNBC, with negative expression of estrogen and progesterone receptors and no overexpression of HER2/neu (ErbB-2)] remains a major therapeutic challenge because of its poor overall prognosis and lack of optimal targeted therapies. Survivin has been implicated as an important mediator of breast cancer cell growth and dysfunctions in apoptosis, and its expression correlates with a higher incidence of metastases and patient mortality; thus, survivin is an attractive target for novel anti-cancer agents. In previous studies, we identified YM155 as a small molecule that selectively suppresses survivin expression. YM155 inhibits the growth of a wide range of human cancer cell lines. Tumor regression induced by YM155 is associated with decreased intratumoral survivin expression, increased apoptosis and a decreased mitotic index. In the present study, we evaluated the antitumor efficacy of YM155 both in vitro and in vivo using preclinical TNBC models. We found that YM155 suppressed survivin expression, including that of its splice variants (survivin 2B, δEx3 and 3B), resulting in decreased cellular proliferation and spontaneous apoptosis of human TNBC cells. In a mouse xenograft model, continuous infusion of YM155 led to the complete regression of subcutaneously established tumors. Furthermore, YM155 reduced spontaneous metastases and significantly prolonged the survival of animals bearing established metastatic tumors in the MDA-MB-231-Luc-D3H2-LN orthotopic model. These results suggest that the survivin-suppressing activity of YM155 may offer a novel therapeutic option for patients with metastatic TNBC. Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Caspase 3; Cell Line, Tumor; Down-Regulation; Enzyme Activation; Female; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, SCID; Naphthoquinones; Neoplasm Metastasis; Receptor, ErbB-2; Receptors, Estrogen; Receptors, Progesterone; Repressor Proteins; Survivin; Xenograft Model Antitumor Assays | 2011 |
Promotion or suppression of experimental metastasis of B16 melanoma cells after oral administration of lapachol.
Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] is a vitamin K antagonist with antitumor activity. The effect of lapachol on the experimental metastasis of murine B16BL6 melanoma cells was examined. A single oral administration of a high toxic dose of lapachol (80-100 mg/kg) 6 h before iv injection of tumor cells drastically promoted metastasis. This promotion of metastasis was also observed in T-cell-deficient mice and NK-suppressed mice. In vitro treatment of B16BL6 cells with lapachol promoted metastasis only slightly, indicating that lapachol promotes metastasis primarily by affecting host factors other than T cells and NK cells. A single oral administration of warfarin, the most commonly used vitamin K antagonist, 6 h before iv injection of tumor cells also drastically promoted the metastasis of B16BL6 cells. The promotion of metastasis by lapachol and warfarin was almost completely suppressed by preadministration of vitamin K3, indicating that the promotion of metastasis by lapachol was derived from vitamin K antagonism. Six hours after oral administration of lapachol or warfarin, the protein C level was reduced maximally, without elongation of prothrombin time. These observations suggest that a high toxic dose of lapachol promotes metastasis by inducing a hypercoagulable state as a result of vitamin K-dependent pathway inhibition. On the other hand, serial oral administration of low non-toxic doses of lapachol (5-20 mg/kg) weakly but significantly suppressed metastasis by an unknown mechanism, suggesting the possible use of lapachol as an anti-metastatic agent. Topics: Administration, Oral; Animals; Male; Melanoma, Experimental; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Nude; Naphthoquinones; Neoplasm Metastasis; Vitamin K | 2008 |
Induction of Egr-1 is associated with anti-metastatic and anti-invasive ability of beta-lapachone in human hepatocarcinoma cells.
beta-lapachone, a quinone compound obtained from the bark of the lapacho tree (Tabebuia avellanedae), was reported to have anti-inflammatory and anti-cancer activities. In this study, we investigated novel functions of beta-lapachone in terms of anti-metastasis and anti-invasion abilities using human hepatocarcinoma cell lines, HepG2 and Hep3B. beta-lapachone dose-dependently inhibited cell viability and migration of both HepG2 and Hep3B cells, as determined by methylthiazoletetrazolium (MTT) assay and wound healing assay. RT-PCR and Western blot data revealed that beta-lapachone dramatically increased the levels of protein, as well as mRNA expression of early growth response gene-1 (Egr-1) and throbospondin-1 (TSP-1) at an early point in time, and then decreased in a time-dependent manner. In addition, down-regulation of Snail and up-regulation of E-cadherin expression were observed in beta-lapachone-treated HepG2 and Hep3B cells, and this the associated with decreased invasive ability as measured by matrigel invasion assay. Taken together, our results strongly suggest that beta-lapachone may be expected to inhibit the progression and metastasis of hepatoma cells, at least in part by inhibiting the invasive ability of the cells via up-regulation of the expression of the Egr-1, TSP-1, and E-cadherin. Topics: Cadherins; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Survival; Early Growth Response Protein 1; Gene Expression Regulation, Neoplastic; Humans; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Snail Family Transcription Factors; Thrombospondin 1; Transcription Factors | 2007 |
Demonstration of the lapachol as a potential drug for reducing cancer metastasis.
Metastasis is the major process responsible for the death in cancer patients. In the search for more effective antineoplasic drugs, many substances are under investigation, among them lapachol. This study aims to examine the molecular and morphological alterations caused by lapachol treatment, as well as its effects on the intrinsic tissue invasive property of this cell line. HeLa cells were exposed to different concentrations of lapachol, and the resulting alterations on cellular protein profile, morphology and invasiveness property were studied. At 400 microg/ml, cellular viability remains unchanged, but lapachol induces alterations in the protein profile and inhibits the invasiveness of HeLa cells in CAM model. With these results, we can conclude that lapachol has a great potential of application in fighting metastasis. Topics: Antineoplastic Agents, Phytogenic; HeLa Cells; Humans; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasms | 2005 |
In vitro 12(S)-HETE inhibitory activities of naphthoquinones isolated from the root bark of Euclea racemosa ssp. schimperi.
Platelet 12-lipoxygenase is believed to play a role in cancer and other pathological conditions, such as psoriasis, atherosclerosis and arthritis. The inhibition of 12-LOX is a potential therapeutic approach in the treatment of tumor metastasis. The extracts of Euclea racemosa Murr. ssp. schimperi (A. DC.) F. White (Ebenaceae) obtained by maceration and naphthoquinones isolated from the dichloromethane extract have been investigated for their 12(S)-HETE inhibitory activity using human platelets. At 100 microg/ml, the dichloromethane extract inhibited the formation of 12(S)-HETE by 88.7% and compounds 7-methyljuglone (2), isodiospyrin (3), neodiospyrin (4) and mamegakinone (5), isolated from this extract, exhibited significant activities with IC(50) values ranging from 4 to 58 microg/ml (22.2-155.7 microM). Of these the most abundant compound, 7-methyljuglone displayed a potent inhibitory activity with an IC(50) value of 4.18 microg/ml (22.2 microM), which was comparable to the positive control baicalein with an IC(50) value of 5 microg/ml (18.5 microM). In contrast, 4(S)-shinanolone (1), the reduced form of compound 2, did not show any significant inhibitory activity even at a concentration of 60 microg/ml. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Antineoplastic Agents, Phytogenic; Ebenaceae; Humans; Magnetic Resonance Spectroscopy; Naphthoquinones; Neoplasm Metastasis; Plant Roots | 2005 |
Scanning electrochemical microscopy of living cells: different redox activities of nonmetastatic and metastatic human breast cells.
Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Calpha), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators. Topics: Animals; Breast; Breast Neoplasms; Cattle; Cell Line; Cell Membrane; Cell Movement; Cells, Immobilized; Electrochemistry; Epithelial Cells; Female; Humans; Isoenzymes; Microscopy, Electron, Scanning; Naphthoquinones; Neoplasm Metastasis; Oxidation-Reduction; Protein Kinase C; Protein Kinase C-alpha; Transfection; Tumor Cells, Cultured; Vitamin K | 2000 |