naphthoquinones and Lung-Neoplasms

naphthoquinones has been researched along with Lung-Neoplasms* in 110 studies

Trials

4 trial(s) available for naphthoquinones and Lung-Neoplasms

ArticleYear
Phase I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer.
    Cancer chemotherapy and pharmacology, 2020, Volume: 86, Issue:2

    This phase I study was conducted to evaluate the safety and pharmacokinetics of YM155, a potent, selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer (NSCLC).. UMIN000031912 at UMIN Clinical Trials Registry (UMIN-CTR).

    Topics: Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Female; Follow-Up Studies; Humans; Imidazoles; Lung Neoplasms; Male; Middle Aged; Naphthoquinones; Prognosis; Protein Kinase Inhibitors; Survivin

2020
A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer.
    Annals of oncology : official journal of the European Society for Medical Oncology, 2013, Volume: 24, Issue:10

    This phase I/II study examined the safety and efficacy of Sepantronium Bromide (S), a small-molecule selective survivin suppressant, administered in combination with carboplatin (C) and paclitaxel (P).. Forty-one patients were treated on study. Twenty-two patients received escalating doses of S (3.6-12 mg/m(2)) and 19 with untreated stage IV non-small-cell lung cancer (NSCLC) were treated with the maximum tolerated dose of 10 mg/m(2) in combination with standard doses of C (AUC6) and P (200 mg/m(2)) for six cycles. S was administered as a continuous intravenous infusion (CIVI) over 72 h in 21-day treatment cycles. Study end points included safety and toxic effect, response rate, progression-free and overall survival (PFS and OS), as well as exploratory pharmacodynamic correlates.. Treatment with S was well tolerated, and toxic effects were mostly hematological in the phase II study. Two (11%) partial responses were observed with a median PFS of 5.7 months and median OS 16.1 months. Pharmacodynamic analysis did not demonstrate an association with response.. The combination of S (10 mg/m(2)/day 72-h CIVI) administered with C and P every 3 weeks exhibited a favorable safety profile but failed to demonstrate an improvement in response rate in advanced NSCLC.. NCT01100931.

    Topics: Adult; Aged; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carboplatin; Carcinoma, Non-Small-Cell Lung; Disease-Free Survival; Female; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Male; Middle Aged; Naphthoquinones; Paclitaxel; Survival; Survivin; Treatment Outcome

2013
Population pharmacokinetic modeling of sepantronium bromide (YM155), a small molecule survivin suppressant, in patients with non-small cell lung cancer, hormone refractory prostate cancer, or unresectable stage III or IV melanoma.
    Investigational new drugs, 2013, Volume: 31, Issue:2

    Purpose Population pharmacokinetics (PK) of sepantronium bromide (YM155) was characterized in patients with non-small cell lung cancer, hormone refractory prostate cancer, or unresectable stage III or IV melanoma and enrolled in one of three phase 2 studies conducted in Europe or the U.S. Method Sepantronium was administered as a continuous intravenous infusion (CIVI) at 4.8 mg/m(2)/day over 7 days every 21 days. Population PK analysis was performed using a linear one-compartment model involving total body clearance (CL) and volume of distribution with an inter-individual random effect on CL and a proportional residual errors to describe 578 plasma sepantronium concentrations obtained from a total of 96 patients by NONMEM Version VI. The first-order conditional estimation method with interaction was applied. Results The one-compartment model with one random effect on CL and two different proportional error models provided an adequate description of the data. Creatinine clearance (CLCR), cancer type, and alanine aminotransferase (ALT) were recognized as significant covariates of CL. CLCR was the most influential covariate on sepantronium exposure and predicted to contribute to a 25 % decrease in CL for patients with moderately impaired renal function (CLCR = 40 mL/min) compared to patients with normal CLCR. Cancer type and ALT had a smaller but nonetheless significant contribution. Other patient characteristics such as age, gender, and race were not considered as significant covariates of CL. Conclusions The results provide the important information for optimizing the therapeutic efficacy and minimizing the toxicity for sepantronium in cancer therapy.

    Topics: Adult; Aged; Aged, 80 and over; Carcinoma, Non-Small-Cell Lung; Dose-Response Relationship, Drug; Ethnicity; Female; Follow-Up Studies; Humans; Imidazoles; Infusions, Intravenous; Inhibitor of Apoptosis Proteins; Japan; Lung Neoplasms; Male; Maximum Tolerated Dose; Melanoma; Middle Aged; Models, Biological; Naphthoquinones; Neoplasm Staging; Neoplasms, Hormone-Dependent; Prognosis; Prostatic Neoplasms; Survivin; Tissue Distribution

2013
Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer.
    Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2009, Sep-20, Volume: 27, Issue:27

    To evaluate the antitumor activity and safety of YM155, a novel, small-molecule suppressor of survivin, as single-agent therapy in patients with previously treated, advanced non-small-cell lung cancer (NSCLC).. Patients with stage IIIb/IV NSCLC who had experienced treatment failure during one or two prior chemotherapy regimens (at least one of which was platinum based) received YM155 as a continuous intravenous infusion (4.8 mg/m(2)/d) over 168 hours followed by observation for 14 days in 21-day treatment cycles. The primary end point was objective tumor response rate (ORR). Secondary end points included duration of stable disease (SD), progression-free survival (PFS), overall survival (OS), safety and pharmacokinetic profiles, and pharmacodynamic evaluations.. Thirty-seven patients received YM155. Two patients achieved a confirmed partial response, with an ORR of 5.4% (95% CI, 0.7% to 18.2%). An additional 14 patients (37.8%) achieved SD resulting in a disease control rate of 43.2% (95% CI, 27.1% to 60.5%). Median duration of PFS was 1.7 months (95% CI, 1.3 to 2.8 months). Median duration of OS was 6.6 months (95% CI, 4 to 12.2 months), with a 1-year survival rate of 35.1%. Treatment with YM155 was well tolerated with the majority of treatment discontinuations not treatment related.. YM155 exhibited modest single-agent activity in patients with refractory, advanced NSCLC. A favorable safety/tolerability profile was reported. Further evaluation of YM155 in combination with chemotherapy and other targeted agents may be warranted.

    Topics: Adult; Aged; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Female; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Male; Microtubule-Associated Proteins; Middle Aged; Naphthoquinones; Survivin; Treatment Failure; Treatment Outcome

2009

Other Studies

106 other study(ies) available for naphthoquinones and Lung-Neoplasms

ArticleYear
Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation.
    Chemico-biological interactions, 2023, Sep-01, Volume: 382

    Small cell lung cancer (SCLC) is a subtype of lung cancer with a very poor overall survival rate due to its extremely high proliferation and metastasis predilection. Shikonin is an active ingredient extracted from the roots of Lithospermum erythrorhizon, and exerts multiple anti-tumor functions in many cancers. In the present study, the role and underlying mechanism of shikonin in SCLC were investigated for the first time. We found that shikonin effectively suppressed cell proliferation, apoptosis, migration, invasion, and colony formation and slightly induced apoptosis in SCLC cells. Further experiment indicated the shikonin could also induced ferroptosis in SCLC cells. Shikonin treatment effectively suppressed the activation of ERK, the expression of ferroptosis inhibitor GPX4, and elevated the level of 4-HNE, a biomarker of ferroptosis. Both total ROS and lipid ROS were increased, while the GSH levels were decreased in SCLC cells after shikonin treatment. More importantly, our data identified that the function of shikonin was dependent on the up-regulation of ATF3 by performing rescue experiments using shRNA to silence the expression of ATF3, especially in the total and lipid ROS accumulaiton. Xenograft model was established using SBC-2 cells, and the results revealed that shikonin also significantly inhibited tumor growth by inducing ferroptosis. Finally, our data further confirmed that shikonin activated ATF3 transcription by impairing the recruitment of HDAC1 mediated by c-myc on the ATF3 promoter, and subsequently elevating of histone acetylation. Our data documented that shikonin suppressed SCLC by inducing ferroptosis in a ATF3-dependent manner. Shikonin upregulated the expression of ATF3 expression via promoting the histone acetylation by inhibiting c-myc-mediated HDAC1 binding on ATF3 promoter.

    Topics: Activating Transcription Factor 3; Cell Line, Tumor; Ferroptosis; Histones; Humans; Lipids; Lung Neoplasms; Naphthoquinones; Reactive Oxygen Species; Small Cell Lung Carcinoma

2023
Anti-tumor effects of novel alkannin derivatives with potent selectivity on comprehensive analysis.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2023, Volume: 117

    Therapeutic approaches based on glycolysis and energy metabolism of tumor cells are new promising strategies for the treatment of cancer. Currently, researches on the inhibition of pyruvate kinase M2, a key rate limiting enzyme in glycolysis, have been corroborated as an effective cancer therapy. Alkannin is a potent pyruvate kinase M2 inhibitor. However, its non-selective cytotoxicity has affected its subsequent clinical application. Thus, it needs to be structurally modified to develop novel derivatives with high selectivity.. Our study aimed to ameliorate the toxicity of alkannin through structural modification and elucidate the mechanism of the superior derivative 23 in lung cancer therapy.. On the basis of the principle of collocation, different amino acids and oxygen-containing heterocycles were introduced into the hydroxyl group of the alkannin side chain. We examined the cell viability of all derivatives on three tumor cells (HepG2, A549 and HCT116) and two normal cells (L02 and MDCK) by MTT assay. Besides, the effect of derivative 23 on the morphology of A549 cells as observed by Giemsa and DAPI staining, respectively. Flow cytometry was performed to assess the effects of derivative 23 on apoptosis and cell cycle arrest. To further assess the effect of derivative 23 on the Pyruvate kinase M2 in glycolysis, an enzyme activity assay and western blot assay were performed. Finally, in vivo the antitumor activity and safety of the derivative 23 were evaluated by using Lewis mouse lung cancer xenograft model.. In this study, alkannin selectivity is reported to be significantly improved following structural modification, and derivative 23 is first shown to be able to inhibit lung cancer growth via the PKM2/STAT3 phosphorylation signaling pathway in vitro, indicating the potential value of derivative 23 in treating lung cancer.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Humans; Lung Neoplasms; Mice; Naphthoquinones; Pyruvate Kinase

2023
Shikonin N-benzyl matrinic acid ester derivatives as novel telomerase inhibitors with potent activity against lung cancer cell lines.
    Bioorganic & medicinal chemistry letters, 2022, 02-01, Volume: 57

    Topics: Alkaloids; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Enzyme Inhibitors; G2 Phase Cell Cycle Checkpoints; Humans; Lung Neoplasms; Matrines; Molecular Docking Simulation; Naphthoquinones; Protein Binding; Quinolizines; Telomerase

2022
Plumbagin reduction by thioredoxin reductase 1 possesses synergy effects with GLUT1 inhibitor on KEAP1-mutant NSCLC cells.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 146

    Thioredoxin reductase 1 (TrxR1 or TXNRD1) is a major enzyme in cellular redox regulation and is considered as a drug target for cancer therapy. Previous studies have reported that plumbagin caused reactive oxygen species (ROS)-dependent apoptosis via inhibiting TrxR1 activity or being reduced by TrxR1, leading to selectively cancer cell death. However, the mechanism of TrxR1-mediated redox cycling of plumbagin is obscure and the evidence for plumbagin targeting TrxR1 is still lacking. Herein, we demonstrated that TrxR1 catalyzed plumbagin reduction in both selenocysteine (Sec)-dependent and independent manners, and its activity relied on the intact N-terminal motif of TrxR1, but a high-efficiency reduction was supported by the C-terminal thiols. During the redox cycling of plumbagin, excessive ROS production was observed coupled with oxygen. Using LC-MS and TrxR1 mutants, we found that the Sec residue of TrxR1 was modified by plumbagin, which converted the enzyme from antioxidant to pro-oxidant. Furthermore, we evaluated the therapeutic potential of plumbagin in non-small cell lung cancer (NSCLC), and found that Kelch-like ECH-associated protein 1 (KEAP1)-mutant NSCLC cells, which possess constitutive nuclear factor erythroid 2-related factor 2 (NRF2) activity, were insensitive to plumbagin; however, inhibition of glucose transporter 1 (GLUT1) by small-molecule BAY-876 or inhibiting glucose-6-phosphate dehydrogenase (G6PD) by 6-aminonicotinamide (6-AN) overcame the plumbagin-resistance of KEAP1-mutant NSCLC cells. Taken together, this study elucidated the pharmacological mechanism of plumbagin by targeting TrxR1 and revealed the synergy effect of plumbagin and BAY-876, which may be helpful for applying naphthoquinone compounds to chemotherapy, particularly for treating KEAP1-mutant NSCLC cells.

    Topics: Animals; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Survival; Glucose Transporter Type 1; Humans; Kelch-Like ECH-Associated Protein 1; Lung Neoplasms; Naphthoquinones; NF-E2-Related Factor 2; Pyrazoles; Quinolines; Rats; Reactive Oxygen Species; Selenocysteine; Thioredoxin Reductase 1

2022
Thioredoxin reductase 1 inhibitor shikonin promotes cell necroptosis via SecTRAPs generation and oxygen-coupled redox cycling.
    Free radical biology & medicine, 2022, 02-20, Volume: 180

    Shikonin, a naturally occurring naphthoquinone with potent anti-tumor activity, has been reported to induce cancer cell death via targeting selenoenzyme thioredoxin reductase 1 (TrxR1; TXNRD1). However, the interaction between shikonin and TrxR1 remains unclear, and the roles of the cellular antioxidant system in shikonin induced cell death are obscure. Here, we found that shikonin modified the Sec

    Topics: Carcinoma, Non-Small-Cell Lung; Humans; Kelch-Like ECH-Associated Protein 1; Lung Neoplasms; Naphthoquinones; Necroptosis; NF-E2-Related Factor 2; Oxidation-Reduction; Oxygen; Reactive Oxygen Species; Thioredoxin Reductase 1; Thioredoxin-Disulfide Reductase

2022
A New 1,2-Naphthoquinone Derivative with Anti-lung Cancer Activity.
    Chemical & pharmaceutical bulletin, 2022, Volume: 70, Issue:7

    1,2-Naphthoquinone (2-NQ) is a nucleophile acceptor that non-selectively makes covalent bonds with cysteine residues in various cellular proteins, and is also found in diesel exhaust, an air pollutant. This molecule has rarely been considered as a pharmacophore of bioactive compounds, in contrast to 1,4-naphthoquinone. We herein designed and synthesized a compound named N-(7,8-dioxo-7,8-dihydronaphthalen-1-yl)-2-methoxybenzamide (MBNQ), in which 2-NQ was hybridized with the nuclear factor-κB (NF-κB) inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) as a nucleophile acceptor. Although 50 µM MBNQ did not inhibit NF-κB signaling, 10 µM MBNQ induced cell death in the lung cancer cell line A549, which was insensitive to 2-NQ (10 µM). In contrast, MBNQ was less toxic in normal lung cells than 2-NQ. A mechanistic study showed that MBNQ mainly induced apoptosis, presumably via the activation of p38 mitogen-activated protein kinase (MAPK). Collectively, the present results demonstrate that the introduction of an appropriate substituent into 2-NQ constitutes a new biologically active entity, which will lead to the development of 2-NQ-based drugs.

    Topics: Apoptosis; Humans; Lung Neoplasms; Naphthoquinones; NF-kappa B

2022
Ym155 localizes to the mitochondria leading to mitochondria dysfunction and activation of AMPK that inhibits BMP signaling in lung cancer cells.
    Scientific reports, 2022, 07-30, Volume: 12, Issue:1

    The imidazolium compound Ym155 was first reported to be a survivin inhibitor. Ym155 potently induces cell death of many types of cancer cells in preclinical studies. However, in phase II clinical trials Ym155 failed to demonstrate a significant benefit. Studies have suggested that the cytotoxic effects of Ym155 in cancer cells are not mediated by the inhibition of survivin. Understanding the mechanism by which Ym155 induces cell death would provide important insight how to improve its efficacy as a cancer therapeutic. We demonstrate a novel mechanism by which Ym155 induces cell death by localizing to the mitochondria causing mitochondrial dysfunction. Our studies suggest that Ym155 binds mitochondrial DNA leading to a decrease in oxidative phosphorylation, decrease in TCA cycle intermediates, and an increase in mitochondrial permeability. Furthermore, we show that mitochondrial stress induced by Ym155 and other mitochondrial inhibitors activates AMP-activated kinase leading to the downregulation to bone morphogenetic protein (BMP) signaling. We provide first evidence that Ym155 initiates cell death by disrupting mitochondrial function.

    Topics: AMP-Activated Protein Kinases; Antineoplastic Agents; Apoptosis; Bone Morphogenetic Proteins; Cell Line, Tumor; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Mitochondria; Naphthoquinones; Survivin

2022
Novel mechanism of napabucasin, a naturally derived furanonaphthoquinone: apoptosis and autophagy induction in lung cancer cells through direct targeting on Akt/mTOR proteins.
    BMC complementary medicine and therapies, 2022, Sep-30, Volume: 22, Issue:1

    Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear.  METHOD: Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis.. Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers.

    Topics: Annexin A5; Apoptosis; Autophagy; Benzofurans; Cell Proliferation; Humans; Lung Neoplasms; Molecular Docking Simulation; Myeloid Cell Leukemia Sequence 1 Protein; Naphthoquinones; Phosphatidylinositol 3-Kinases; Poly(ADP-ribose) Polymerase Inhibitors; Proto-Oncogene Proteins c-akt; Signal Transduction; TOR Serine-Threonine Kinases

2022
Bone morphogenetic protein receptor 2 inhibition destabilizes microtubules promoting the activation of lysosomes and cell death of lung cancer cells.
    Cell communication and signaling : CCS, 2021, 09-25, Volume: 19, Issue:1

    Recent studies have shown that bone morphogenetic protein receptor 2 (BMPR2) regulates cell survival signaling events in cancer cells independent of the BMP type 1 receptor (BMPR1) or the Smad-1/5 transcription factor. Mutations in BMPR2 trafficking proteins leads to overactive BMP signaling, which leads to neurological diseases caused by BMPR2 stabilization of the microtubules. It is not known whether BMPR2 regulates the microtubules in cancer cells and what effect this has on cell survival. It is also not known whether alterations in BMPR2 trafficking effects activity and response to BMPR2 inhibitors.. We utilized BMPR2 siRNA and the BMP receptor inhibitors JL5 and Ym155, which decrease BMPR2 signaling and cause its mislocalization to the cytoplasm. Using the JL5 resistant MDA-MD-468 cell line and sensitive lung cancer cell lines, we examined the effects of BMPR2 inhibition on BMPR2 mislocalization to the cytoplasm, microtubule destabilization, lysosome activation and cell survival.. We show that the inhibition of BMPR2 destabilizes the microtubules. Destabilization of the microtubules leads to the activation of the lysosomes. Activated lysosomes further decreases BMPR2 signaling by causing it to mislocalizated to the cytoplasm and/or lysosome for degradation. Inhibition of the lysosomes with chloroquine attenuates BMPR2 trafficking to the lysosome and cell death induced by BMPR2 inhibitors. Furthermore, in MDA-MD-468 cells that are resistant to JL5 induced cell death, BMPR2 was predominately located in the cytoplasm. BMPR2 failed to localize to the cytoplasm and/or lysosome following treatment with JL5 and did not destabilize the microtubules or activate the lysosomes.. These studies reveal that the inhibition of BMPR2 destabilizes the microtubules promoting cell death of cancer cells that involves the activation of the lysosomes. Resistance to small molecules targeting BMPR2 may occur if the BMPR2 is localized predominantly to the cytoplasm and/or fails to localize to the lysosome for degradation. Video Abstract.

    Topics: Bone Morphogenetic Protein Receptors, Type I; Bone Morphogenetic Protein Receptors, Type II; Cell Death; Cell Proliferation; Cell Survival; Humans; Imidazoles; Lung Neoplasms; Lysosomes; Microtubules; Naphthoquinones; Pyrazoles; Pyrimidines; Quinolones; RNA, Small Interfering; Signal Transduction

2021
Shikonin Inhibits Non-Small-Cell Lung Cancer H1299 Cell Growth through Survivin Signaling Pathway.
    Analytical cellular pathology (Amsterdam), 2021, Volume: 2021

    Overexpressed survivin is associated with worse survival of several types of human tumors. In this study, the antitumor activity of shikonin in non-small-cell lung cancer (NSCLC) by regulating survivin pathway was investigated. Results showed that shikonin inhibited the NSCLC H1299 cell proliferation in a dose-dependent manner. Moreover, shikonin fits well with survivin by molecular docking. Shikonin also inhibited the mRNA expression and protein level of survivin in H1299 cells. Shikonin arrested H1299 cell cycle at the G0/G1 phase by regulating CDK/cyclin family members. In addition, shikonin regulated the expression of X-linked inhibitor of apoptosis- (XIAP-) mediated caspases 3 and 9, thus leading to the damage of mitochondrial membrane potential and induction of H1299 cell apoptosis. Overall, shikonin inhibited H1299 cell growth by inducing apoptosis and blocking the cell cycle. The underlying mechanism involves targeting survivin, which subsequently regulates the protein expression of XIAP/caspase 3/9, CDK2/4, and cyclin E/D1. Thus, shikonin, a survivin inhibitor, is a promising therapeutic strategy in NSCLC treatment.

    Topics: Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Humans; Lung Neoplasms; Naphthoquinones; Signal Transduction; Survivin

2021
Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8
    Pharmacological research, 2021, Volume: 169

    Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8

    Topics: ADP-Ribosylation Factor 1; Animals; Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; CD8-Positive T-Lymphocytes; Cell Line, Tumor; Down-Regulation; Female; Lung Neoplasms; Lymphocyte Activation; Mice, Nude; Naphthoquinones; Neoplasm Transplantation

2021
Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer.
    Molecular medicine reports, 2021, Volume: 24, Issue:2

    Lung cancer is one of the most lethal diseases and therefore poses a significant threat to human health. The Warburg effect, which is the observation that cancer cells predominately produce energy through glycolysis, even under aerobic conditions, is a hallmark of cancer. 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 2 (PFKFB) is an important regulator of glycolysis. Shikonin is a Traditional Chinese herbal medicine, which has been reported to exert antitumor effects. The present study aimed to investigate the anticancer activity of shikonin in lung cancer. Cell Counting Kit‑8 (CCK‑8) and colony formation assays were used to analyze proliferation in A549 and H446 cells. Wound healing and Transwell assays were used to measure migration and invasion in A549 and H446 cells. Cell apoptosis was analyzed using flow cytometry. Lactate levels, glucose uptake and cellular ATP levels were measured using their corresponding commercial kits. Western blotting was performed to analyze the protein expression levels of key enzymes involved in aerobic glucose metabolism. Reverse transcription‑quantitative PCR was used to analyze the mRNA expression levels of PFKFB2. The results of the present study revealed that PFKFB2 expression levels were significantly upregulated in NSCLC tissues. Shikonin treatment decreased the proliferation, migration, invasion, glucose uptake, lactate levels, ATP levels and PFKFB2 expression levels and increased apoptosis in lung cancer cells in a dose‑dependent manner. The overexpression of PFKFB2 increased the proliferation, migration, glucose uptake, lactate levels and ATP levels in lung cancer cells, while the knockdown of PFKFB2 expression exerted the opposite effects. Moreover, there were no significant differences in lung cancer cell migration, apoptosis, glucose uptake, lactate levels and ATP levels between cells with knocked down PFKFB2 expression or treated with shikonin and the knockdown of PFKFB2 in cells treated with shikonin. In conclusion, the results of the present study revealed that shikonin inhibited the Warburg effect and exerted antitumor activity in lung cancer cells, which was associated with the downregulation of PFKFB2 expression.

    Topics: Aged; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line; Cell Movement; Cell Proliferation; Dose-Response Relationship, Drug; Down-Regulation; Female; Gene Expression Regulation, Neoplastic; Glycolysis; Humans; Lung Neoplasms; Male; Middle Aged; Naphthoquinones; Phosphofructokinase-2; Up-Regulation; Warburg Effect, Oncologic

2021
ALCAP2 inhibits lung adenocarcinoma cell proliferation, migration and invasion via the ubiquitination of β-catenin by upregulating the E3 ligase NEDD4L.
    Cell death & disease, 2021, 07-31, Volume: 12, Issue:8

    Lung cancer is recognized as the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) being the predominant subtype, accounting for approximately 85% of lung cancer cases. Although great efforts have been made to treat lung cancer, no proven method has been found thus far. Considering β, β-dimethyl-acryl-alkannin (ALCAP2), a natural small-molecule compound isolated from the root of Lithospermum erythrorhizon. We found that lung adenocarcinoma (LUAD) cell proliferation and metastasis can be significantly inhibited after treatment with ALCAP2 in vitro, as it can induce cell apoptosis and arrest the cell cycle. ALCAP2 also significantly suppressed the volume of tumours in mice without inducing obvious toxicity in vivo. Mechanistically, we revealed that ALCAP2-treated cells can suppress the nuclear translocation of β-catenin by upregulating the E3 ligase NEDD4L, facilitating the binding of ubiquitin to β-catenin and eventually affecting the wnt-triggered transcription of genes such as survivin, cyclin D1, and MMP9. As a result, our findings suggest that targeting the oncogene β-catenin with ALCAP2 can inhibit the proliferation and metastasis of LUAD cells, and therefore, ALCAP2 may be a new drug candidate for use in LUAD therapeutics.

    Topics: Adenocarcinoma of Lung; Animals; Apoptosis; beta Catenin; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mice, Nude; Naphthoquinones; Nedd4 Ubiquitin Protein Ligases; Neoplasm Invasiveness; RNA, Messenger; Ubiquitination; Up-Regulation; Xenograft Model Antitumor Assays

2021
STAT3 inhibitor BBI608 enhances the antitumor effect of gefitinib on EGFR-mutated non-small cell lung cancer cells.
    Human cell, 2021, Volume: 34, Issue:6

    Gefitinib is known as epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) while an increasing number of patients with non-small cell lung cancer (NSCLC) are becoming resistant to EGFR-TKI. Therefore, innovative methods are urgently needed to overcome primary and acquired resistance to EGFR-TKIs in NSCLC patients. The viability of HCC827 cells and HCC827 Ge-resistant (Ge-r) cells treated with gefitinib and/or STAT3 inhibitor and/or Overexpression (Oe)-ROR1 was detected by CCK-8 assay. The colony formation, invasion, migration and apoptosis of HCC827 Ge-r cells treated with gefitinib and/or STAT3 inhibitor and/or Oe-ROR1 transfection were, respectively, detected by clone formation assay, transwell assay, wound healing assay and flow cytometry analysis. The protein expressions of EGFR, STAT3, invasion and migration-related proteins, ROR1/ABCB1/P53 pathway and apoptosis-related proteins were analyzed by Western blot analysis. The transfection effect of Oe-ROR1 in HCC827 Ge-r cells was confirmed by qRT-PCR and Western blot analysis. In vivo animal experiment was used to confirm the role of STAT3 in improving the sensitivity of HCC827 Ge-r cells to gefitinib. As a result, after treatment of gefitinib, the viability of HCC827 cells was lower than that of HCC827 Ge-r cells and the expression of p/t-EGFR and p/t-STAT3 was decreased in HCC827 cells and HCC827 Ge-r cells after treatment of gefitinib. STAT3 inhibitor BBI608 enhanced the ability of gefitinib to inhibit viability, invasion and migration while promoting apoptosis of HCC827 Ge-r cells treated with gefitinib, which was partially reversed by ROR1 overexpression. STAT3 inhibitor further down-regulated the expression of MMP2, MMP9, ROR1, ABCB1 and BCl2, while up-regulated the expression of p53, bax and cleaved caspase3 in HCC827 Ge-r cells treated with gefitinib, which was partially reversed by ROR1 overexpression. In vivo experiment, STAT3 inhibitor further suppressed the size of NSCLC tissues, and further down-regulated the expression of ROR1 and ABCB1 while up-regulated the expression of p53 in NSCLC tissues. In conclusion, STAT3 inhibitor enhanced the antitumor effect of gefitinib on EGFR-mutated NSCLC cells through regulating ROR1/ABCB1/P53 pathway.

    Topics: Antineoplastic Agents; Apoptosis; Benzofurans; Cell Line, Tumor; Cell Movement; Drug Resistance, Neoplasm; Drug Synergism; ErbB Receptors; Gefitinib; Gene Expression; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Multidrug Resistance-Associated Proteins; Mutation; Naphthoquinones; Neoplasm Invasiveness; Protein Kinase Inhibitors; Receptor Tyrosine Kinase-like Orphan Receptors; Signal Transduction; STAT3 Transcription Factor; Tumor Suppressor Protein p53

2021
Synergistic Cytotoxicity Of Shikonin-Silver Nanoparticles As An Opportunity For Lung Cancer.
    Journal of labelled compounds & radiopharmaceuticals, 2020, Volume: 63, Issue:1

    Topics: A549 Cells; Apoptosis; Cell Survival; Drug Synergism; Humans; Lung Neoplasms; Metal Nanoparticles; Naphthoquinones; Silver

2020
Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone.
    Redox biology, 2020, Volume: 30

    Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to β-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of β-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to β-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to β-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to β-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to β-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.

    Topics: Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Survival; Drug Resistance, Neoplasm; HEK293 Cells; Humans; Kelch-Like ECH-Associated Protein 1; Lung Neoplasms; Mutation; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; NF-E2-Related Factor 2; Superoxide Dismutase-1; Thioredoxin Reductase 1

2020
Plumbagin engenders apoptosis in lung cancer cells via caspase-9 activation and targeting mitochondrial-mediated ROS induction.
    Archives of pharmacal research, 2020, Volume: 43, Issue:2

    Topics: A549 Cells; Antineoplastic Agents, Phytogenic; Apoptosis; Caspase 9; Cell Movement; Cell Proliferation; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Lung Neoplasms; Membrane Potential, Mitochondrial; Mitochondria; Molecular Structure; Naphthoquinones; Reactive Oxygen Species; Structure-Activity Relationship; Tumor Cells, Cultured

2020
A natural anthraquinone derivative shikonin synergizes with AZD9291 against wtEGFR NSCLC cells through reactive oxygen species-mediated endoplasmic reticulum stress.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2020, Volume: 68

    NSCLC is the major type of lung cancer and the survival rates of NSCLC patients remain low. AZD9291 is a third-generation EGFR-TKI and approved to treat NSCLC patients harboring EGFR T790M mutation and common targetable activating EGFR mutations, but it has a limited effect for wtEGFR NSCLC.. The current study investigated whether shikonin could enhance the antitumor effect of AZD9291 in wtEGFR NSCLC cells.. SRB and colony formation assay were used to detect the proliferation of NSCLC cells, propidium iodide staining was performed to detect the apoptosis, ROS was analyzed using DCFH-DA staining, and western blot was used to detect the expression of indicated proteins.. We demonstrated that shikonin, a natural ROS inducer, could enhance the antitumor effect of AZD9291 in wtEGFR NSCLC cells. In addition, shikonin increased AZD9291-induced apoptosis accompanying with the generation of ROS and activation of ER stress. Furthermore, ROS inhibition by NAC or GSH reversed the apoptosis induced by shikonin plus AZD9291, and recovered the ER stress activated by combination treatment, indicating that ROS mediated ER stress played a vital role in this combination therapy. Moreover, shikonin increased the anticancer activity of AZD9291 in primary wtEGFR NSCLC cells through ROS-mediated ER stress.. Our study suggests that combining shikonin with AZD9291 is a promising therapeutic strategy for treating wtEGFR NSCLC patients.

    Topics: A549 Cells; Acrylamides; Aniline Compounds; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Synergism; Endoplasmic Reticulum Stress; ErbB Receptors; Humans; Lung Neoplasms; Naphthoquinones; Protein Kinase Inhibitors; Reactive Oxygen Species

2020
Suppression of Drug-Resistant Non-Small-Cell Lung Cancer with Inhibitors Targeting Minichromosomal Maintenance Protein.
    Journal of medicinal chemistry, 2020, 03-26, Volume: 63, Issue:6

    Drug resistance has been a major threat in cancer therapies that necessitates the development of new strategies to overcome this problem. We report here a cell-based high-throughput screen of a library containing two-million molecules for the compounds that inhibit the proliferation of non-small-cell lung cancer (NSCLC). Through the process of phenotypic screening, target deconvolution, and structure-activity relationship (SAR) analysis, a compound of furanonaphthoquinone-based small molecule, AS4583, was identified that exhibited potent activity in tyrosine kinase inhibitor (TKI)-sensitive and TKI-resistant NSCLC cells (IC

    Topics: Animals; Antineoplastic Agents; Binding Sites; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Enzyme Inhibitors; Furans; High-Throughput Screening Assays; Humans; Lung Neoplasms; Mice, Nude; Minichromosome Maintenance Proteins; Molecular Docking Simulation; Molecular Structure; Naphthoquinones; Protein Binding; Small Molecule Libraries; Structure-Activity Relationship; Ubiquitination; Xenograft Model Antitumor Assays

2020
Shikonin suppresses NEAT1 and Akt signaling in treating paclitaxel-resistant non-small cell of lung cancer.
    Molecular medicine (Cambridge, Mass.), 2020, 04-08, Volume: 26, Issue:1

    The development of paclitaxel-resistance led to the tumor relapse and treatment failure of non-small cell lung cancer. Shikonin has been demonstrated to show anti-cancer activity in many cancer types. The present study aimed to investigate the anti-cancer activity of shikonin in paclitaxel-resistant non-small cell lung cancer treatment.. MTT, clonogenic assay, apoptotic cell death analysis, western blot, qRT-PCR, gene knockdown and overexpression, xenograft experiment, immunohistochemistry were performed.. Shikonin decreased paclitaxel-resistant NSCLC cell viability and inhibited the growth of xenograft tumor. Shikonin induced apoptotic cell death of paclitaxel-resistant NSCLC cell lines and suppressed the level of NEAT1 and Akt signaling of paclitaxel-resistant NSCLC cell lines and xenograft tumors. Either low dose or high dose of shikonin considerably suppressed the cell growth and induced the cell apoptotic death in NEAT1 knockdown A549/PTX cells, and p-Akt expression was decreased.. Shikonin could be a promising candidate for paclitaxel-resistant NSCLC treatment.

    Topics: A549 Cells; Animals; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Humans; Lung Neoplasms; Male; Mice; Naphthoquinones; Paclitaxel; Phosphorylation; Proto-Oncogene Proteins c-akt; RNA, Long Noncoding; Signal Transduction; Xenograft Model Antitumor Assays

2020
Deoxyshikonin inhibits cisplatin resistance of non-small-cell lung cancer cells by repressing Akt-mediated ABCB1 expression and function.
    Journal of biochemical and molecular toxicology, 2020, Volume: 34, Issue:10

    Drug resistance is a large challenge for the treatment of non-small-cell lung cancer (NSCLC). Deoxyshikonin is the naphthoquinol compound with anticancer activity. However, the role and mechanism of deoxyshikonin in cisplatin resistance of NSCLC remain poorly understood. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Cell apoptosis was evaluated by flow cytometry and caspase-3 activity. We found that cisplatin-resistant A549/cis and H1299/cis cells had higher cisplatin resistance than A549 and H1299 cells, respectively. Deoxyshikonin contributed to cisplatin-induced viability inhibition and apoptosis in A549/cis and H1299/cis cells. Moreover, deoxyshikonin inhibited phosphorylation of Akt and the expression and function of ATP-binding cassette subfamily B member 1 (ABCB1). Activation of protein kinase B (Akt) pathway attenuated the effect of deoxyshikonin on cisplatin resistance and ABCB1 expression and function in A549/cis and H1299/cis cells. In conclusion, deoxyshikonin suppressed cisplatin resistance in cisplatin-resistant NSCLC cells by repressing Akt signaling-mediated ABCB1 expression.

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cisplatin; Drug Resistance, Neoplasm; Humans; Lung Neoplasms; Naphthoquinones; Proto-Oncogene Proteins c-akt

2020
Shikonin blocks human lung adenocarcinoma cell migration and invasion in the inflammatory microenvironment via the IL‑6/STAT3 signaling pathway.
    Oncology reports, 2020, Volume: 44, Issue:3

    Increasing evidence indicates that the inflammatory tumor microenvironment can lead to cancer cell metastasis. Shikonin, which is extracted from the Chinese herb Zicao (the dried root of Lithospermum erythrorhizon), possesses various pharmacological effects, but its effect on tumor metastasis in the inflammatory microenvironment remains unknown. In the present study, we aimed to investigate the potential effect of shikonin on tumor metastasis in an inflammatory microenvironment as well as the underlying molecular mechanisms. It was found that, in the inflammatory microenvironment simulated by THP‑1 cell conditioned medium (THP‑1‑CM) in vitro, shikonin significantly inhibited the epithelial‑mesenchymal transition (EMT), migration and invasion of human lung adenocarcinoma cell lines A549 and H1299. In addition, we found that interleukin‑6 (IL‑6), which is expressed in THP‑1‑CM, promoted the EMT of lung adenocarcinoma cells, and shikonin markedly inhibited IL‑6‑induced EMT and cell motility. Moreover, shikonin inhibited IL‑6‑induced phosphorylation of signal transducer and activator of transcription 3 (STAT3), prevented phosphorylated STAT3 (p‑STAT3) translocation into the nucleus, and suppressed p‑STAT3 transactivation activity. Additionally, it was found that shikonin inhibited lung metastasis, EMT and expression of p‑STAT3 of A549 cells in vivo. Furthermore, IL‑6 levels in human lung adenocarcinoma tissues were significantly associated with tumor‑node‑metastasis stage and lymph node metastasis, and its expression was correlated with tumor‑associated macrophage (TAM) infiltration. Together, these results suggest that shikonin suppresses the migration and invasion of human lung adenocarcinoma cells in an inflammatory microenvironment involving the IL‑6/STAT3 signaling pathway.

    Topics: A549 Cells; Adenocarcinoma of Lung; Cell Movement; Drugs, Chinese Herbal; Epithelial-Mesenchymal Transition; Female; Humans; Interleukin-6; Lung; Lung Neoplasms; Lymphatic Metastasis; Male; Middle Aged; Naphthoquinones; Neoplasm Invasiveness; Signal Transduction; STAT3 Transcription Factor; THP-1 Cells; Tumor Microenvironment; Tumor-Associated Macrophages; Xenograft Model Antitumor Assays

2020
Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, plumbagin, as a novel strategy for radioprotection.
    Free radical biology & medicine, 2019, 11-01, Volume: 143

    Radiation induced damage to normal cells is a major shortcoming of conventional radiotherapy, which necessitates the development of novel radio-protective drugs. An ideal radio-modulator would protect normal cells while having cytotoxic effects on cancer cells. Plumbagin is a potent anti-tumour agent and has been shown to sensitize tumour cells to radiation-induced damage. In the present study, we have evaluated the radio-protective potential of plumbagin and found that it protected normal lymphocytes against radiation-induced apoptosis, but did not protect cancer cells against radiation. Plumbagin offered radioprotection even when it was added to cells after irradiation. The ability of only thiol based antioxidants to abrogate the radio-protective effects of plumbagin suggested a pivotal role of thiol groups in the radio-protective activity of plumbagin. Further, protein interaction network (PIN) analysis was used to predict the molecular targets of plumbagin. Based on the inputs from plumbagin's PIN and in light of its well-documented ability to modulate thiol groups, we proposed that plumbagin may act via modulation of caspase enzyme which harbours a critical catalytic cysteine. Indeed, plumbagin suppressed radiation-induced increase in homogenous caspase and caspase-3 activity in lymphocytes. Plumbagin also inhibited the activity of recombinant caspase-3 and mass spectrometric analysis revealed that plumbagin covalently interacts with caspase-3. Further, the in vivo radioprotective efficacy of plumbagin (single dose of 2mg/kg body weight) was demonstrated by its ability to rescue mice against radiation (7.5 Gy; Whole Body Irradiation) induced mortality. These results indicate that plumbagin prevents radiation induced apoptosis specifically in normal cells by inhibition of caspase-3 activity.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Caspase 3; Cell Proliferation; Gamma Rays; Gene Expression Regulation, Enzymologic; Humans; Lung Neoplasms; Lymphocytes; Mice; Naphthoquinones; Oxidation-Reduction; Phosphorylation; Radiation-Protective Agents

2019
STAT3 induces G9a to exacerbate HER3 expression for the survival of epidermal growth factor receptor-tyrosine kinase inhibitors in lung cancers.
    BMC cancer, 2019, Oct-16, Volume: 19, Issue:1

    HER3 mediates drug resistance against epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), resulting in tumor relapse in lung cancers. Previously, we demonstrated that EGFR induces HER3 overexpression, which facilitates the formation of cancer stem-like tumorspheres. However, the cellular mechanism through which EGFR regulates HER3 expression remains unclear. We hypothesized that EGFR downstream of STAT3 participates in HER3 expression because STAT3 contributes to cancer stemness and survival of EGFR-TKI resistant cancers.. First, RNAseq was used to uncover potential genes involved in the formation of lung cancer HCC827-derived stem-like tumorspheres. EGFR-positive lung cancer cell lines, including HCC827, A549, and H1975, were individually treated with a panel containing 172 therapeutic agents targeting stem cell-associated genes to search for potential agents that could be applied against EGFR-positive lung cancers. In addition, gene knockdown and RNAseq were used to investigate molecular mechanisms through which STAT3 regulates tumor progression and the survival in lung cancer.. BBI608, a STAT3 inhibitor, was a potential therapeutic agent that reduced the cell viability of EGFR-positive lung cancer cell lines. Notably, the inhibitory effects of BBI608 were similar with those associated with YM155, an ILF3 inhibitor. Both compounds reduced G9a-mediated HER3 expression. We also demonstrated that STAT3 upregulated G9a to silence miR-145-5p, which exacerbated HER3 expression in this study.. The present study revealed that BBI608 could eradicate EGFR-positive lung cancers and demonstrated that STAT3 enhanced the expression of HER3 through miR-145-5p repression by G9a, indicating that STAT3 is a reliable therapeutic target against EGFR-TKI-resistant lung cancers.

    Topics: A549 Cells; Animals; Benzofurans; Cell Movement; Cell Survival; Drug Resistance, Neoplasm; ErbB Receptors; Gene Knockdown Techniques; Histocompatibility Antigens; Histone-Lysine N-Methyltransferase; Humans; Imidazoles; Lung Neoplasms; Male; Mice; Mice, Inbred NOD; Mice, SCID; MicroRNAs; Naphthoquinones; Nuclear Factor 90 Proteins; Protein Kinase Inhibitors; Receptor, ErbB-3; STAT3 Transcription Factor; Xenograft Model Antitumor Assays

2019
Phytochemical naphtho[1,2-b] furan-4,5‑dione induced topoisomerase II-mediated DNA damage response in human non-small-cell lung cancer.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Feb-15, Volume: 54

    Phytochemical naphtho[1,2-b] furan-4,5‑dione (NFD) presenting in Avicennia marina exert anti-cancer effects, but little is known regarding about DNA damage-mediated apoptosis in non-small-cell lung carcinoma (NSCLC).. To examine whether NFD-induced apoptosis of NSCLC cells is correlated with the induction of DNA damage, and to investigate its underlying mechanism.. The anti-proliferative effects of NFD were assessed by MTS Assay Kit FACS assay, and in vivo nude mice xenograft assay. The DNA damage related proteins, the Bcl-2 family and pro-apoptotic factors were examined by immunofluorescence assay, q-PCR, and western blotting. The activity of NF-κB p65 in nuclear extracts was detected using a colorimetric DNA-binding ELISA assay. The inhibitory activity of topoisomerase II (TOPO II) was evaluated by molecular docking and TOPO II catalytic assay.. NFD exerted selective cytotoxicity against NSCLC H1299, H1437 and A549 cells rather than normal lung-embryonated cells MRC-5. Remarkably, we found that NFD activated the hull marker and modulator of DNA damage repairs such as γ-H2AX, ATM, ATR, CHK1, and CHK2 probably caused by the accumulation of intracellular reactive oxygen species (ROS) and inhibition of TOPO II activity. Furthermore, the suppression of transcription factor NF-κB by NFD resulted in significantly decreased levels of pro-survival proteins including Bcl-2 family Bcl-2, Bcl-xL and Mcl-1 and the endogenous inhibitors of apoptosis XIAP and survivin in H1299 cells. Moreover, the nude mice xenograft assay further validated the suppression of H1299 growth by NFD, which is the first report for evaluating the anti-cancer effect of NFD in vivo.. These findings provide a novel mechanism indicating the inhibition of TOPO II activity and NF-κB signaling by NFD, leading to DNA damage and apoptosis of NSCLC tumor cells.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; DNA Damage; DNA Topoisomerases, Type II; Female; Furans; Humans; Lung Neoplasms; Mice, Nude; Molecular Docking Simulation; Naphthoquinones; NF-kappa B; Poly-ADP-Ribose Binding Proteins; Reactive Oxygen Species; Signal Transduction; Xenograft Model Antitumor Assays

2019
The design of 1,4-naphthoquinone derivatives and mechanisms underlying apoptosis induction through ROS-dependent MAPK/Akt/STAT3 pathways in human lung cancer cells.
    Bioorganic & medicinal chemistry, 2019, 04-15, Volume: 27, Issue:8

    The natural compound 1,4-naphthoquinone has potent anti-tumor activity. However, the clinical application of 1,4-naphthoquinone and its derivatives has been limited by their side effects. In this study, we attempted to reduce the toxicity of 1,4-naphthoquinone by synthesizing two derivatives: 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ). Then we evaluated the cytotoxicity and molecular mechanisms of these compounds in lung cancer cells. EPDMNQ and ENDMNQ significantly inhibited the viabilities of three lung cancer cell lines and induced A549 cell cycle arrest at the G1 phase. In addition, they induced the apoptosis of A549 lung cancer cells by increasing the phosphorylation of p38 and c-Jun N-terminal kinase (p-JNK), and decreasing the phosphorylation of extracellular signal-related kinase (p-ERK), protein kinase B (Akt), and signal transducer and activator of transcription 3 (STAT3). Furthermore, they increased reactive oxygen species (ROS) levels in A549 cells; however, pretreatment with the ROS inhibitor N-acetyl-l-cysteine significantly inhibited EPDMNQ- and ENDMNQ-mediated apoptosis and reversed apoptotic proteins expression. In conclusion, EPDMNQ and ENDMNQ induced G1 phase cell cycle arrest and apoptosis in A549 cells via the ROS-mediated activation of mitogen activated protein kinase (MAPK), Akt and STAT3 signaling pathways.

    Topics: Acetylcysteine; Apoptosis; Cell Line, Tumor; Drug Design; G1 Phase Cell Cycle Checkpoints; Humans; Lung Neoplasms; Mitogen-Activated Protein Kinases; Naphthoquinones; Phosphorylation; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; STAT3 Transcription Factor

2019
MS-275 potentiates the effect of YM-155 in lung adenocarcinoma via survivin downregulation induced by miR-138 and miR-195.
    Thoracic cancer, 2019, Volume: 10, Issue:6

    YM-155 has been proven to be an efficient antitumor suppressor in non-small cell lung cancer (NSCLC) cells. However, the suppressive effect of YM-155 on the expression of survivin is not sufficient and has a short half-life. MS-275, a histone deacetylase inhibitor, has significant antitumor capacity with a relatively long half-life. Our study explored whether MS-275 could enhance the inhibitory effect of YM-155 on LUAD proliferation.. To investigate the synergistic effect of MS-275 and YM-155, we employed methyl thiazolyl tetrazolium and colony formation assays to access the inhibition effect of MS-275, YM-155, or a combination in A549 and HCC827 cell lines. We then detected the effect of MS-275 and YM-155 on the expression of survivin and pro-apoptotic proteins by Western blot and miR-138 or miR-195 expression by quantitative PCR. We also analyzed the methylation level of microRNAs (miRNAs) using methylation-sensitive quantitative PCR. Finally, we investigated the interaction between miRNAs and survivin by luciferase reporter assay.. MS-275 facilitated an inhibitory effect of YM-155 on lung adenocarcinoma cell proliferation. MS-275 can upregulate the level of acetylated H3, promote the degradation of DNA methyltransferases, and inhibit the methylation of miR-138 and miR-195 genes to elevate the expression of miR-138 and miR-195. Moreover, miR-138 and miR-195 showed a synergistic effect with YM-155 by directly binding to the 3 untranslated region of survivin to attenuate its expression.. For the first time, we report the synergistic effective of MS-275 and YM-155 and suggest a new direction for the future application of YM-155.

    Topics: A549 Cells; Adenocarcinoma of Lung; Animals; Benzamides; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Methylation; Down-Regulation; Drug Synergism; Gene Expression Regulation, Neoplastic; Histones; Humans; Imidazoles; Lung Neoplasms; Mice; MicroRNAs; Naphthoquinones; Pyridines; Survivin; Xenograft Model Antitumor Assays

2019
Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer.
    International journal of pharmaceutics, 2019, Jul-20, Volume: 566

    Lung cancer remains 23% of cancer-related death worldwide, ranking on first place for men and second place for women. Almost each cancer type has a great deal in common, overexpression of the apoptosis inhibitor survivin. Chemotherapy with anticancer drugs is leading to side effects. Drug targeting by the use of nanobubbles is a useful strategy to reduce side effects. Nanobubbles in cancer are one of the most investigated carriers in the last years. The size of nanobubbles (1-500 nm) is bigger than the pore size of healthy tissues, but smaller than the pores of cancer tissues. Thus, it is not possible for the drug to leave the blood stream and enter the tissue, but it can enter the cancer tissue through the pores, where it can accumulate. Therefore, the probability of undesired side effects decreases. For that reason, the development of nanobubbles containing paclitaxel and survivin inhibitor sepantronium bromide (YM155) were carried out. Characterization studies in terms of particle size, size distribution, zeta potential and morphology, and investigation of their effects on lung cancer cells were performed. To the best of our knowledge, there is no information in the literature about combining paclitaxel and YM155 loaded nanobubbles with ultrasound exposure.

    Topics: A549 Cells; Antineoplastic Agents, Phytogenic; Cell Survival; Drug Liberation; Humans; Imidazoles; Lung Neoplasms; Nanostructures; Naphthoquinones; Paclitaxel; Survivin

2019
Plumbagin suppresses the human large cell lung cancer cell lines by inhibiting IL-6/STAT3 signaling in vitro.
    International immunopharmacology, 2018, Volume: 55

    Large cell lung cancer (LCLC) patients have a poor prognosis because their tumors are highly malignant and show resistance to chemotherapy and radiotherapy. Plumbagin has anticancer activity toward several tumor types, but its effects on LCLC are unknown. This study investigated the effects of plumbagin on human L9981 and NL9980 large cell lung cancer cells and the mechanisms underlying its action.. After the introduction of exogenous IL-6, the mRNA expression of signaling genes and downstream genes was significantly increased in a concentration-dependent manner. Furthermore, plumbagin significantly inhibited the expression of the above mentioned genes in a dose-dependent and time-dependent manner. The mRNA expression levels of downstream genes were correlated with those of signaling genes.. Plumbagin was found to significantly inhibit the proliferation and invasion of L9981 and NL9980 cells, and may be an effective therapy for LCLC through targeting the IL-6/STAT3 signaling pathway.

    Topics: Antineoplastic Agents; Carcinoma, Large Cell; Cell Line, Tumor; Cell Movement; Cell Proliferation; Humans; Interleukin-6; Lung Neoplasms; Naphthoquinones; Phosphorylation; Signal Transduction; STAT3 Transcription Factor

2018
EGFR-mediated interleukin enhancer-binding factor 3 contributes to formation and survival of cancer stem-like tumorspheres as a therapeutic target against EGFR-positive non-small cell lung cancer.
    Lung cancer (Amsterdam, Netherlands), 2018, Volume: 116

    YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics.. The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres.. We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells.. This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers.

    Topics: A549 Cells; Afatinib; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Synergism; ErbB Receptors; Humans; Imidazoles; Lung Neoplasms; Male; Mice; Mice, Inbred NOD; Mice, SCID; Molecular Targeted Therapy; Naphthoquinones; Neoplastic Stem Cells; Nuclear Factor 90 Proteins; Phosphorylation; Protein Kinase Inhibitors; Random Allocation; Xenograft Model Antitumor Assays

2018
Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis.
    Journal of natural medicines, 2018, Volume: 72, Issue:2

    The life-threatening potential of lung cancer has increased over the years due to its acquisition of chemotherapeutic resistance, especially to cisplatin, a first-line therapy. In response to this development, researchers have turned their attention to several compounds derived from natural origins, including cypripedin (CYP), a phenanthrenequinone substance extracted from Dendrobium densiflorum. The aim of the present study was to investigate the ability of CYP to induce apoptosis and enhance cisplatin-mediated death of human lung cancer NCI-H460 cells using cell viability and apoptosis assays. The induction of apoptosis by CYP was observed at a concentration of > 50 μM with the appearance of morphological changes, including DNA condensation and chromatin fragmentation. Together with, CYP was able to activate caspase-3 and downregulate the anti-apoptotic proteins Bcl-2 and Bcl-xL. Also, a non-cytotoxic dose of CYP synergistically potentiated the effect of cisplatin in non-small cell lung cancer line H460 cells, which clearly exhibited the apoptotic phenotype. Western blot analysis revealed that the underlying mechanism involved the downregulation of anti-apoptotic Bcl-xL, whereas the levels of other apoptotic regulatory proteins were not altered. This study provides interesting information on the potent effect of CYP as a chemotherapeutic sensitizer that could be further developed to improve the clinical outcomes of lung cancer patients.

    Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cisplatin; Humans; Lung Neoplasms; Naphthoquinones

2018
BBI608 inhibits cancer stemness and reverses cisplatin resistance in NSCLC.
    Cancer letters, 2018, 08-01, Volume: 428

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide. While partial or complete tumor regression can be achieved in patients, particularly with cisplatin-based strategies, these initial responses are frequently short-lived and are followed by tumor relapse and chemoresistance. Identifying the root of cisplatin resistance in NSCLC and elucidating the mechanism(s) of tumor relapse, is of critical importance in order to determine the point of therapeutic failure, which in turn, will aid the discovery of novel therapeutics, new combination strategies and a strategy to enhance the efficacy of current chemotherapeutics. It has been hypothesized that cancer stem cells (CSCs) may be the initiating factor of resistance. We have previously identified and characterized an aldehyde dehydrogenase 1 CSC subpopulation in cisplatin resistant NSCLC. BBI608 is a small molecule STAT3 inhibitor known to suppress cancer relapse, progression and metastasis. Here, we show that BBI608 can inhibit stemness gene expression, deplete CSCs and overcome cisplatin resistance in NSCLC.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Benzofurans; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cisplatin; Drug Resistance, Neoplasm; Humans; Lung Neoplasms; Naphthoquinones; Neoplastic Stem Cells; STAT3 Transcription Factor

2018
Endoplasmic reticulum stress-mediated autophagy protects against β,β-dimethylacrylshikonin-induced apoptosis in lung adenocarcinoma cells.
    Cancer science, 2018, Volume: 109, Issue:6

    β,β-Dimethylacrylshikonin (DMAS) is an anti-cancer compound extracted from the roots of Lithospermum erythrorhizon. The present study aims to investigate the effects of DMAS on human lung adenocarcinoma cells in vitro and explore the mechanisms of its anti-cancer action. We showed that DMAS markedly inhibited cell viability in a dose- and time-dependent way, and induced apoptosis as well as autophagy in human lung adenocarcinoma cells. Furthermore, we found that DMAS stimulated endoplasmic reticulum stress and mediated autophagy through the PERK-eIF2α-ATF4-CHOP and IRE1-TRAF2-JNK axes of the unfolded protein response in human lung adenocarcinoma cells. We also showed that the autophagy induced by DMAS played a prosurvival role in human lung adenocarcinoma cells and attenuated the apoptotic cascade. Collectively, combined treatment of DMAS and pharmacological autophagy inhibitors could offer an effective therapeutic strategy for lung adenocarcinoma treatment.

    Topics: A549 Cells; Adenocarcinoma; Apoptosis; Autophagy; Autophagy-Related Protein 5; Cell Line, Tumor; Cell Survival; Endoplasmic Reticulum Stress; Humans; Lung Neoplasms; Naphthoquinones; RNA Interference; Signal Transduction; Transcription Factor CHOP; Unfolded Protein Response

2018
Shikonin enhances sensitization of gefitinib against wild-type EGFR non-small cell lung cancer via inhibition PKM2/stat3/cyclinD1 signal pathway.
    Life sciences, 2018, Jul-01, Volume: 204

    Mutant EGFR Non-small cell lung cancer has benefit from gefitinib, but it has limited effect for wild-type EGFR tumors. Shikonin, a natural naphthoquinone isolated from a traditional Chinese medicine, the plant Lithospermum erythrorhizon (zicao), not only can inhibit the tumor growth, but also overcome cancer drug resistance. Our aim is to investigate whether shikonin can enhance antitumor effect of gefitinib in EGFR wild-type lung cancer cells in vitro and in vivo.. CCK-8 was used to determine the proliferation of EGFR wild-type non-small cell lung cancer. Apoptosis and cell cycle were detected by flow cytometry. PKM2, STAT3, p-STAT3 and cyclinD1 were detected by Western blot. A549 tumor model was established to observe the antitumor effect of shikonin combination with gefitinib in vivo.. The results showed that combination of shikonin with gefitinib exhibited synergistic antitumor effect in vitro and in vivo. Its potential molecular mechanisms may be associated with inhibition of PKM2/STAT3/cyclinD1.. These results provide a promising therapeutic approach for the treatment of wild-type EGFR non-small cell lung cancer.

    Topics: A549 Cells; Animals; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; Carrier Proteins; Cell Line, Tumor; Cell Survival; Cyclin D1; Drug Synergism; ErbB Receptors; Gefitinib; Humans; Immunohistochemistry; Lung Neoplasms; Membrane Proteins; Mice; Mice, Nude; Naphthoquinones; Quinazolines; Signal Transduction; Sincalide; STAT3 Transcription Factor; Thyroid Hormone-Binding Proteins; Thyroid Hormones

2018
Cypripedin diminishes an epithelial-to-mesenchymal transition in non-small cell lung cancer cells through suppression of Akt/GSK-3β signalling.
    Scientific reports, 2018, 05-22, Volume: 8, Issue:1

    Lung cancer appears to have the highest rate of mortality among cancers due to its metastasis capability. To achieve metastasis, cancer cells acquire the ability to undergo a switch from epithelial to mesenchymal behaviour, termed the epithelial-to-mesenchymal transition (EMT), which is associated with poor clinical outcomes. Drug discovery attempts have been made to find potent compounds that will suppress EMT. Cypripedin, a phenanthrenequinone isolated from Thai orchid, Dendrobium densiflorum, exhibits diverse pharmacological activities. In this study, we found that cypripedin attenuated typical mesenchymal phenotypes, including migratory behaviour, of non-small cell lung cancer H460 cells, with a significant reduction of actin stress fibres and focal adhesion and with weakened anchorage-independent growth. Western blot analysis revealed that the negative activity of this compound on EMT was a result of the down-regulation of the EMT markers Slug, N-Cadherin and Vimentin, which was due to ATP-dependent tyrosine kinase (Akt) inactivation. As a consequence, the increase in the Slug degradation rate via a ubiquitin-proteasomal mechanism was encouraged. The observation in another lung cancer H23 cell line also supported this finding, indicating that cypripedin exhibits a promising pharmacological action on lung cancer metastasis that could provide scientific evidence for the further development of this compound.

    Topics: Carcinoma, Non-Small-Cell Lung; Cell Adhesion; Cell Movement; Cell Proliferation; Cell Survival; Down-Regulation; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3 beta; Humans; Lung Neoplasms; Naphthoquinones; Neoplasm Metastasis; Proto-Oncogene Proteins c-akt; Signal Transduction; Tumor Cells, Cultured

2018
Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy.
    Molecular medicine reports, 2018, Volume: 18, Issue:4

    As patients with non‑small cell lung cancer (NSCLC) and wild‑type epidermal growth factor receptor (EGFR) are resistant to treatment with erlotinib or gefitinib, potential chemosensitizers are required to potentiate wild‑type EGFR NSCLC cells to erlotinib/gefitinib treatment. The present study reported that shikonin could sensitize the anticancer activity of erlotinib/gefitinib in wild‑type EGFR NSCLC cells. Furthermore, shikonin could potentiate mitochondrial‑mediated apoptosis induced by erlotinib/gefitinib in wild‑type EGFR NSCLC cells. In addition, the present study demonstrated that shikonin could induce apoptosis by activating reactive oxygen species (ROS)‑mediated endoplasmic reticulum (ER) stress, and that erlotinib/gefitinib may also induce ER stress in wild‑type EGFR NSCLC cells; however, shikonin plus erlotinib/gefitinib was more effective in activating ER stress than either agent alone. This indicated that ROS‑mediated ER stress may be associated with enhanced mitochondrial apoptosis induced by shikonin plus erlotinib/gefitinib. In addition, shikonin may promote the transition of cytoprotective ER stress‑inducing EGFR‑tyrosine kinase inhibitor tolerance to apoptosis‑promoting ER stress. Furthermore, shikonin may enhance the anti‑NSCLC activity of erlotinib/gefitinib in vivo. The data of the present study indicated that shikonin may be a potential sensitizer to enhance the anti‑cancer efficacy of erlotinib/gefitinib in wild‑type EGFR NSCLC cells resistant to erlotinib/gefitinib treatment.

    Topics: A549 Cells; Animals; Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Humans; Lithospermum; Lung Neoplasms; Mice, Nude; Naphthoquinones; Protein Kinase Inhibitors; Reactive Oxygen Species

2018
YM155 sensitizes non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitors through the mechanism of autophagy induction.
    Biochimica et biophysica acta. Molecular basis of disease, 2018, Volume: 1864, Issue:12

    Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.

    Topics: Antineoplastic Agents; Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Humans; Imidazoles; Lung Neoplasms; Naphthoquinones; Protein Kinase Inhibitors; Survivin

2018
Anti-tumor activity of Shikonin against afatinib resistant non-small cell lung cancer via negative regulation of PI3K/Akt signaling pathway.
    Bioscience reports, 2018, 12-21, Volume: 38, Issue:6

    Topics: Afatinib; Animals; Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Resistance, Neoplasm; Humans; Lithospermum; Lung Neoplasms; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction

2018
Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice.
    Bioorganic & medicinal chemistry letters, 2017, 05-01, Volume: 27, Issue:9

    Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths in both men and women in the United States. It has been recently demonstrated that osteopontin (OPN) effectively inhibits cofilin activity through the focal adhesion kinase (FAK)/AKT/Rho-associated kinase (ROCK) pathway to induce the invasion of human non-small cell lung cancer (NSCLC) cells. Plumbagin was isolated from the roots of the medicinal plant Plumbago zeylanica L. and has been reported to possess anticancer activities. However, the molecular mechanisms by which plumbagin inhibits the invasion of cancer cells is still unclear. In this study, the anti-invasive and anti-metastatic mechanisms of plumbagin were investigated in OPN-treated NSCLC A549 cells. OPN effectively induced the motility and invasion of NSCLC A549 cells and H1299 cells, which was strongly suppressed by plumbagin with no evidence of cytotoxicity. In addition, lamellipodia formation at the leading edge of cells by OPN was dramatically decreased in plumbagin-treated cells. Plumbagin caused an effective inhibition in OPN-induced the expression of ROCK1 as well as the phosphorylation of LIM kinase 1 and 2 (LIMK1/2), and cofilin. OPN-induced the phosphorylation of FAK and AKT was impaired without affecting their total forms by plumbagin treatment. OPN facilitated metastatic lung colonization, which was effectively suppressed in plumbagin-treated mice. Taken together, these results suggest that plumbagin reduces OPN-induced the invasion of NSCLC A549 cells, which resulted from inhibiting the ROCK pathway mediated by the FAK/AKT pathway and suppresses lung metastasis in vivo.

    Topics: A549 Cells; Animals; Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; Cell Movement; Humans; Lung; Lung Neoplasms; Male; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Neoplasm Invasiveness; Osteopontin; Plumbaginaceae; Protein Kinase Inhibitors; rho-Associated Kinases; Signal Transduction

2017
β-Lapachone suppresses the lung metastasis of melanoma via the MAPK signaling pathway.
    PloS one, 2017, Volume: 12, Issue:5

    β-Lapachone is a natural quinone compound from Lapacho trees, which has various pharmacological effects such as anti-bacterial, anti-fungal, anti-viral, and anti-inflammatory activities. However, the effect of β-lapachone on metastasis of melanoma cells is unclear. In this study, β-lapachone reduced cell viability of metastatic melanoma cancer cell lines B16F10 and B16BL6 through induction of apoptosis via the mitogen-activated protein kinase (MAPK) pathway. Additionally, flow cytometry results showed that β-lapachone increased DNA content in the G0/G1 phase of the cell cycle. Analysis of the mechanisms of these events indicated that β-lapachone regulated the expression of Bcl-2, Bcl-xL, and Bax, resulting in the activation of caspase-3, -8, -9, and poly-ADP-ribose polymerase (PARP). Moreover, the β-lapachone-administered group showed significantly decreased lung metastasis in the experimental mouse model. In conclusion, our study demonstrates the inhibitory effect of β-lapachone on lung metastasis of melanoma cells and provides a new insight into the role of β-lapachone as a potential antitumor agent.

    Topics: Animals; Female; Humans; Lung Neoplasms; MAP Kinase Signaling System; Melanoma; Mice; Mice, Inbred C57BL; Naphthoquinones; Neoplasm Metastasis

2017
Shikonin Inhibited Migration and Invasion of Human Lung Cancer Cells via Suppression of c-Met-Mediated Epithelial-to-Mesenchymal Transition.
    Journal of cellular biochemistry, 2017, Volume: 118, Issue:12

    Epithelial-to-mesenchymal transition (EMT) is a major process to regulate cell migration and invasion. Inhibition of epidermal growth factor receptor (EGFR)-mediated EMT by tyrosine kinase inhibitors (TKIs) is a strategy to prevent lung cancer invasion. However, drug resistance is emerged and accelerated invasion through other signaling bypassing EGFR after TKIs therapy. c-Met signaling pathway is highly activated in EGFR-mutated lung cancer cells. Targeting c-Met signaling pathway may be a strategy to suppress EGFR-independent migration and invasion for lung cancer therapy. Therefore, we examined the anti-migration and anti-invasion abilities of shikonin, an active compound from Lithospermum erythrorhizon, in highly and ligand-induced c-Met activation lung cancer cells. Our results revealed that cell viability and cell cycle progression did not change under 1 μM of shikoinin treatment in highly c-Met expressive HCC827 lung cancer cells. Endogenous c-Met activation was dose-dependently inhibited and the migration and invasion activity of HCC827 cells were suppressed by shikonin treatment. Induction of E-cadherin expression and inhibition of vimentin, slug, and snail expression by shikonin was through c-Met-mediated PI3K/Akt and ERK signaling suppression. Furthermore, hepatocyte growth factor (HGF)-induced migration, invasion and EMT marker change were reversed by shikonin in low c-Met expressive A549 lung cancer cells. Inhibition of HGF-induced c-Met, PI3K/Akt and MEK/ERK activation were observed in shikonin-treated cells. Co-treatment of PI3K/Akt inhibitor or ERK inhibitor with shikonin enhanced shikonin-reversed HGF-regulated EMT marker expression. Taken together, the results suggested that the anti-migration and anti-invasion activities of shikonin was through c-Met inhibition and following by EMT suppression in lung cancer. J. Cell. Biochem. 118: 4639-4651, 2017. © 2017 Wiley Periodicals, Inc.

    Topics: A549 Cells; Carcinoma, Non-Small-Cell Lung; Cell Movement; Epithelial-Mesenchymal Transition; Humans; Lung Neoplasms; MAP Kinase Signaling System; Naphthoquinones; Neoplasm Invasiveness; Proto-Oncogene Proteins c-met

2017
Shikonin-induced necroptosis is enhanced by the inhibition of autophagy in non-small cell lung cancer cells.
    Journal of translational medicine, 2017, 05-31, Volume: 15, Issue:1

    Shikonin, a natural naphthoquinone pigment purified from Lithospermum erythrorhizon, induces necroptosis in various cancer types, but the mechanisms underlying the anticancer activity of shikonin in lung cancer are not fully understood. This study was designed to clarify whether shikonin causes necroptosis in non-small cell lung cancer (NSCLC) cells and to investigate the mechanism of action.. Multiplex and caspase 8 assays were used to analyze effect of shikonin on A549 cells. Cytometry with annexin V/PI staining and MTT assays were used to analyze the mode of cell death. Western blotting was used to determine the effect of shikonin-induced necroptosis and autophagy. Xenograft and orthotopic models with A549 cells were used to evaluate the anti-tumor effect of shikonin in vivo.. Most of the cell death induced by shikonin could be rescued by the specific necroptosis inhibitor necrostatin-1, but not by the general caspase inhibitor Z-VAD-FMK. Tumor growth was significantly lower in animals treated with shikonin than in the control group. Shikonin also increased RIP1 protein expression in tumor tissues. Autophagy inhibitors, including methyladenine (3-MA), ATG5 siRNA, and bafilomycin A, enhanced shikonin-induced necroptosis, whereas RIP1 siRNA had no effect on the apoptotic potential of shikonin.. Our data indicated that shikonin treatment induced necroptosis and autophagy in NSCLC cells. In addition, the inhibition of shikonin-induced autophagy enhanced necroptosis, suggesting that shikonin could be a novel therapeutic strategy against NSCLC.

    Topics: A549 Cells; Animals; Apoptosis; Carcinoma, Non-Small-Cell Lung; Caspase 8; Cell Line, Tumor; Gene Silencing; Humans; Imidazoles; Indoles; Lithospermum; Lung Neoplasms; Macrolides; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Necrosis; Neoplasm Transplantation; RNA, Small Interfering; X-Ray Microtomography

2017
YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells.
    PloS one, 2017, Volume: 12, Issue:8

    Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This study investigated the potential mechanism of YM155 against cancer stemness in lung cancer. Tumorspheres derived from epidermal growth factor receptor (EGFR)-mutant HCC827 and EGFR wild-type A549 cells expressing higher cancer stemness markers (CD133, Oct4, and Nanog) were used as cancer stemness models. We observed that EGFR autophosphorylation (Y1068) was higher in HCC827- and A549-derived tumorspheres than in parental cells; this autophosphorylation induced tumorsphere formation by activating G9a-mediated stemness. Notably, YM155 inhibited tumorsphere formation by blocking the autophosphorylation of EGFR and the EGFR-G9a-mediated stemness pathway. The chemical and genetic inhibition of EGFR and G9a revealed the significant role of the EGFR-G9a pathway in maintaining the cancer stemness property. In conclusion, this study not only revealed that EGFR could trigger tumorsphere formation by elevating G9a-mediated stemness but also demonstrated that YM155 could inhibit this formation by simultaneously blocking EGFR autophosphorylation and G9a activity, thus acting as a potent agent against lung cancer stemness.

    Topics: Afatinib; Antineoplastic Agents; Cell Line, Tumor; Drug Evaluation, Preclinical; ErbB Receptors; Gene Expression Regulation, Neoplastic; Histocompatibility Antigens; Histone-Lysine N-Methyltransferase; Humans; Imidazoles; Lung Neoplasms; Methylation; Naphthoquinones; Octamer Transcription Factor-3; Phosphorylation; Quinazolines; RNA, Messenger

2017
YM155 inhibits topoisomerase function.
    Anti-cancer drugs, 2017, Volume: 28, Issue:2

    YM155 (sepantronium bromide) has been evaluated in clinical trials as a survivin suppressant, but despite positive signals from early work, later studies were negative. Clarification of the mechanism of action of YM155 is important for its further development. YM155 affects cells in a cell cycle-specific manner. When cells are in G1, YM155 prevented their progression through the S phase, leaving the cells at G1/S when exposed to YM155. Passage through mitosis from G2 is also defective following YM155 exposure. In this study, YM155 did not behave like a typical DNA intercalator in viscosity, circular dichroism, and absorption spectroscopy studies. In addition, molecular modeling experiments ruled out YM155 DNA interaction to produce DNA intercalation. We show that YM155 inhibited topoisomerase 2α decatenation and topoisomerase 1-mediated cleavage of DNA, suggesting that YM155 inhibits the enzyme function. Consistent with these findings, DNA double-strand break repair was also inhibited by YM155.

    Topics: Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Line, Tumor; DNA Breaks; DNA Repair; DNA Replication; Humans; Imidazoles; Lung Neoplasms; Naphthoquinones; Topoisomerase Inhibitors

2017
Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway.
    Pharmacological research, 2017, Volume: 115

    Non-small cell lung cancer (NSCLC) is the dominant type of lung cancer. Molecular targeting has highly improved the treatment efficacy of lung cancer, but new challenges have emerged, such as gefitinib-resistance and cancer recurrence. Therefore, new chemotherapeutic agents and treatment strategies are urgently needed. Shikonin is the main active component of a Chinese medicinal plant 'Zi Cao', which has been shown to exhibit powerful anti-cancer activity in certain types of cancer; however, its activity in gefitinib-resistant lung cancer has never been addressed. In this study, we used a high-throughput screening assay for epidermal growth factor receptor (EGFR) inhibitors and discovered that Shikonin is a potent inhibitor of EGFR. The cytotoxicity of Shikonin and its anti-cancer mechanism in NSCLC was deeply explored. Shikonin exhibited selective cytotoxicity among two NSCLC cell lines (H1975 and H1650) and one normal lung fibroblast cell line (CCD-19LU). Shikonin significantly increased the activity of caspases and poly (ADP-ribosyl) polymerase (PARP), which are indicators of apoptosis, and the intensity of ROS by greater than 10-fold. NAC, an inhibitor of ROS, completely blocked apoptosis, caspase and PARP activation induced by Shikonin. Shikonin remarkably suppressed the phosphorylation of EGFR and led to EGFR degradation. The enhancement of ROS generation in H1650 and H1975 gefitinib-resistant NSCLC cells leads to impairment of growth and induction of apoptosis, whereas modulation of EGFR degradation and its downstream signalling pathways by Shikonin contributes to its anti-tumour properties in H1975 gefitinib-resistant NSCLC cells (with T790M and L858R activating mutations). Shikonin-induced cell apoptosis is closely associated with ROS elevation in the cells. These findings indicate that Shikonin can be an effective small molecule treating gefitinib-resistant NSCLC.

    Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Resistance, Neoplasm; ErbB Receptors; Gefitinib; High-Throughput Screening Assays; Humans; Lung Neoplasms; Mutation; Naphthoquinones; Neoplasm Recurrence, Local; Phosphorylation; Protein Kinase Inhibitors; Quinazolines; Signal Transduction; Thioredoxin-Disulfide Reductase

2017
β-Lapachone Inhibits Lung Metastasis of Colorectal Cancer by Inducing Apoptosis of CT26 Cells.
    Integrative cancer therapies, 2017, Volume: 16, Issue:4

    β-Lapachone is a quinone-containing compound found in red lapacho ( Tabebuia impetiginosa, syn. T avellanedae) trees. Lapacho has been used in traditional medicine by several South and Central American indigenous people to treat various types of cancer. The purpose of this study was to investigate the antimetastatic properties of β-lapachone and the underlying mechanisms using colon cancer cells.. This research used metastatic murine colon cancer cell lines, colon 26 (CT26) and colon 38 (MC38). A WST assay, annexin V assay, cell cycle analysis, wound healing assay, invasion assay, western blot analysis, and real-time reverse transcription-polymerase chain reaction were performed to examine the effects of β-lapachone on metastatic phenotypes and molecular mechanisms. The effect of β-lapachone on lung metastasis was assessed in a mouse experimental metastasis model.. We found that the inhibition of proliferation of the colon cancer cell lines by β-lapachone was due to the induction of apoptosis and cell cycle arrest. β-Lapachone induced the apoptosis of CT26 cells through caspase-3, -8, and -9 activation; poly(ADP-ribose) polymerase cleavage; and downregulation of the Bcl-2 family in a dose- and time-dependent manner. In addition, a low concentration of β-lapachone decreased the cell migration and invasion by decreasing the expression of matrix metalloproteinases-2 and -9, and increased the expression of tissue inhibitors of metalloproteinases-1 and -2. Moreover, β-lapachone treatment regulated the expression of epithelial-mesenchymal transition markers such as E- and N-cadherin, vimentin, β-catenin, and Snail in CT26 cells. In the mouse experimental metastasis model, β-lapachone significantly inhibited the lung metastasis of CT26 cells.. Our results demonstrated the inhibitory effect of β-lapachone on colorectal lung metastasis. This compound may be useful for developing therapeutic agents to treat metastatic cancer.

    Topics: Animals; Apoptosis; Biomarkers, Tumor; Caspases; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Colorectal Neoplasms; Down-Regulation; Epithelial-Mesenchymal Transition; Female; Lung Neoplasms; Mice; Mice, Inbred BALB C; Naphthoquinones; Proto-Oncogene Proteins c-bcl-2

2017
Novel naphtho[2,1-d]oxazole-4,5-diones as NQO1 substrates with improved aqueous solubility: Design, synthesis, and in vivo antitumor evaluation.
    Bioorganic & medicinal chemistry, 2016, Mar-01, Volume: 24, Issue:5

    A new series of ortho-naphthoquinone analogs of β-lapachone were designed, synthesized and evaluated. The biological results indicated that most of our compounds were efficient substrates for NQO1. The new scaffold with water-soluble side chain resulted in greater solubility under acidic condition compared to β-lapachone. Thus avoiding the use of hydroxylpropyl β-cyclodextrin which would finally cause the rapid drug clearance from the blood and dose-limiting toxicity in the form of hemolytic anemia. The most soluble and promising compound in this series was 2-((4-benzylpiperazin-1-yl)methyl)naphtho[2,1-d]oxazole-4,5-dione (3k), which inhibited cancer cell (NQO1-rich A549 cell line) growth at IC50 values of 4.6±1.0μmol·L(-1). Furthermore, compound 3k had in vivo antitumor activity in an A549 tumor xenografts mouse model comparable to the activity obtained with β-lapachone. The results indicated that these ortho-naphthoquinones could serve as promising leads for further optimization as novel substrates for NQO1.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Humans; Lung; Lung Neoplasms; Mice; Mice, Nude; Molecular Docking Simulation; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Solubility; Water

2016
Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway.
    Oncotarget, 2016, Mar-08, Volume: 7, Issue:10

    The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the "silencing" the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property.

    Topics: Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Chlorambucil; HEK293 Cells; Humans; Imidazoles; Lung Neoplasms; Myeloid Cell Leukemia Sequence 1 Protein; Naphthoquinones; NF-kappa B p50 Subunit; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Transcription Factor RelA

2016
YM155, a small molecule inhibitor of survivin expression, sensitizes cancer cells to hypericin-mediated photodynamic therapy.
    Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2016, 06-08, Volume: 15, Issue:6

    Photodynamic therapy (PDT) represents a rapidly developing alternative treatment for various types of cancers. Although considered highly effective, cancer cells can exploit various mechanisms, including the upregulation of apoptosis inhibitors, to overcome the cytotoxic effect of PDT. Survivin, a member of the inhibitor of apoptosis protein family, is known to play a critical role in cancer progression and therapeutic resistance and therefore represents a potential therapeutic target. The aim of this study was to investigate whether YM155, a small molecule inhibitor of survivin expression, can potentiate the cytotoxic effect of hypericin-mediated PDT (HY-PDT). Accordingly, two cell lines resistant to HY-PDT, HT-29 (colorectal adenocarcinoma) and A549 (lung adenocarcinoma), were treated either with HY-PDT alone or in combination with YM155. The efficacy of different treatment regimens was assessed by MTT assay, flow cytometry analysis of metabolic activity, viability, phosphatidylserine externalisation, mitochondrial membrane potential and caspase-3 activity and immunoblotting for the cleavage of poly (ADP-ribose) polymerase (PARP). Here we show for the first time that the repression of survivin expression by YM155 is effective in sensitizing HT-29 and A549 cells to HY-PDT, as measured by the decrease in cell viability and induction of apoptosis. Combined treatment with hypericin and YM155 led to a more severe dissipation of the mitochondrial membrane potential and caused an increase in caspase-3 activation and subsequent PARP cleavage. Our results demonstrate that the repression of survivin expression by YM155 potentially represents a novel alternative strategy to increase the efficacy of HY-PDT in cancer cells that are otherwise weakly responsive or non-responsive to treatment.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Anthracenes; Antineoplastic Agents; Autophagy; Caspase 3; Cell Cycle; Cell Line, Tumor; Cell Survival; Colorectal Neoplasms; Drug Resistance, Neoplasm; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Membrane Potential, Mitochondrial; Naphthoquinones; Perylene; Photochemotherapy; Photosensitizing Agents; Survivin

2016
Mathematical Modeling of the Role of Survivin on Dedifferentiation and Radioresistance in Cancer.
    Bulletin of mathematical biology, 2016, Volume: 78, Issue:6

    We use a mathematical model to investigate cancer resistance to radiation, based on dedifferentiation of non-stem cancer cells into cancer stem cells. Experimental studies by Iwasa 2008, using human non-small cell lung cancer (NSCLC) cell lines in mice, have implicated the inhibitor of apoptosis protein survivin in cancer resistance to radiation. A marked increase in radio-sensitivity was observed, after inhibiting survivin expression with a specific survivin inhibitor YM155 (sepantronium bromide). It was suggested that these observations are due to survivin-dependent dedifferentiation of non-stem cancer cells into cancer stem cells. Here, we confirm this hypothesis with a mathematical model, which we fit to Iwasa's data on NSCLC in mice. We investigate the timing of combination therapies of YM155 administration and radiation. We find an interesting dichotomy. Sometimes it is best to hit a cancer with a large radiation dose right at the beginning of the YM155 treatment, while in other cases, it appears advantageous to wait a few days until most cancer cells are sensitized and then radiate. The optimal strategy depends on the nature of the cancer and the dose of radiation administered.

    Topics: Animals; Carcinoma, Non-Small-Cell Lung; Cell Dedifferentiation; Cell Line, Tumor; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Mathematical Concepts; Mice; Models, Biological; Naphthoquinones; Neoplastic Stem Cells; Radiation Tolerance

2016
Shikonin induces apoptosis of lung cancer cells via activation of FOXO3a/EGR1/SIRT1 signaling antagonized by p300.
    Biochimica et biophysica acta, 2016, Volume: 1863, Issue:11

    Topics: A549 Cells; Acetylation; Animals; Antineoplastic Agents; Apoptosis; Bcl-2-Like Protein 11; Carcinoma, Non-Small-Cell Lung; Dose-Response Relationship, Drug; E1A-Associated p300 Protein; Early Growth Response Protein 1; Female; Forkhead Box Protein O3; Gene Expression Regulation, Neoplastic; Histone Deacetylase Inhibitors; Humans; Lung Neoplasms; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Proto-Oncogene Proteins c-akt; RNA Interference; Signal Transduction; Sirtuin 1; Time Factors; Transfection; Xenograft Model Antitumor Assays

2016
Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors.
    Cancer cell, 2016, Dec-12, Volume: 30, Issue:6

    Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition. In NQO1

    Topics: Animals; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Damage; Drug Synergism; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mice; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Pancreatic Neoplasms; Poly(ADP-ribose) Polymerase Inhibitors; Reactive Oxygen Species; Up-Regulation; Xenograft Model Antitumor Assays

2016
β, β-Dimethylacrylshikonin induces mitochondria-dependent apoptosis of human lung adenocarcinoma cells in vitro via p38 pathway activation.
    Acta pharmacologica Sinica, 2015, Volume: 36, Issue:1

    β, β-Dimethylacrylshikonin (DMAS) is an anticancer compound extracted from the roots of Lithospermum erythrorhizon. In the present study, we investigated the effects of DMAS on human lung adenocarcinoma cells in vitro and explored the mechanisms of its anti-cancer action.. Human lung adenocarcinoma A549 cells were tested. Cell viability was assessed using an MTT assay, and cell apoptosis was evaluated with flow cytometry and DAPI staining. The expression of the related proteins was detected using Western blotting. The mitochondrial membrane potential was measured using a JC-1 kit, and subcellular distribution of cytochrome c was analyzed using immunofluorescence staining.. Treatment of A549 cells with DMAS suppressed the cell viability in dose- and time-dependent manners (the IC50 value was 14.22 and 10.61 μmol/L, respectively, at 24 and 48 h). DMAS (7.5, 10, and 15 μmol/L) dose-dependently induced apoptosis, down-regulated cIAP-2 and XIAP expression, and up-regulated Bax and Bak expression in the cells. Furthermore, DMAS resulted in loss of mitochondrial membrane potential and release of cytochrome c in the cells, and activated caspase-9, caspase-8, and caspase-3, and subsequently cleaved PARP, which was abolished by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. DMAS induced sustained p38 phosphorylation in the cells, while pretreatment with SB203580, a specific p38 inhibitor, blocked DMAS-induced p38 activation and apoptosis.. DMAS inhibits the growth of human lung adenocarcinoma A549 cells in vitro via activation of p38 signaling pathway.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Apoptosis; Cell Line, Tumor; Humans; Lung Neoplasms; MAP Kinase Signaling System; Mitochondria; Naphthoquinones; Signal Transduction

2015
Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy.
    Journal of controlled release : official journal of the Controlled Release Society, 2015, Feb-28, Volume: 200

    Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered by poor pharmacokinetics and toxicity due to hemolytic anemia. Here, we report the development and preclinical evaluation of β-lap prodrug nanotherapeutics consisting of diester derivatives of β-lap encapsulated in biocompatible and biodegradable poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-b-PLA) micelles. Compared to the parent drug, diester derivatives of β-lap showed higher drug loading densities inside PEG-b-PLA micelles. After esterase treatment, micelle-delivered β-lap-dC3 and -dC6 prodrugs were converted to β-lap. Cytotoxicity assays using A549 and H596 lung cancer cells showed that both micelle formulations maintained. quinone oxidoreductase 1 (NQO1)-dependent cytotoxicity. However, antitumor efficacy study of β-lap-dC3 micelles against orthotopic A549 NSCLC xenograft-bearing mice showed significantly greater long-term survival over β-lap-dC6 micelles or β-lap-HPβCD complexes. Improved therapeutic efficacy of β-lap-dC3 micelles correlated with higher area under the concentration-time curves of β-lap in tumors, and enhanced pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γH2AX, and ATP depletion). β-Lap-dC3 prodrug micelles provide a promising strategy for NQO1-targeted therapy of lung cancer with improved safety and antitumor efficacy.

    Topics: Animals; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Comet Assay; Erythrocytes; Esterases; Female; Hemolysis; Humans; Lactates; Lung Neoplasms; Mice, SCID; Micelles; NAD(P)H Dehydrogenase (Quinone); Nanoparticles; Naphthoquinones; Polyethylene Glycols; Prodrugs; Tumor Burden

2015
NF2 blocks Snail-mediated p53 suppression in mesothelioma.
    Oncotarget, 2015, Apr-30, Volume: 6, Issue:12

    Although asbestos causes malignant pleural mesothelioma (MPM), rising from lung mesothelium, the molecular mechanism has not been suggested until now. Extremely low mutation rate in classical tumor suppressor genes (such as p53 and pRb) and oncogenes (including Ras or myc) indicates that there would be MPM-specific carcinogenesis pathway. To address this, we treated silica to mimic mesothelioma carcinogenesis in mesothelioma and non-small cell lung cancer cell lines (NSCLC). Treatment of silica induced p-Erk and Snail through RKIP reduction. In addition, p53 and E-cadherin were decreased by silica-treatment. Elimination of Snail restored p53 expression. We found that NF2 (frequently deleted in MPM) inhibited Snail-mediated p53 suppression and was stabilized by RKIP. Importantly, GN25, an inhibitor of p53-Snail interaction, induced p53 and apoptosis. These results indicate that MPM can be induced by reduction of RKIP/NF2, which suppresses p53 through Snail. Thus, the p53-Snail binding inhibitor such as GN25 is a drug candidate for MPM.

    Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Extracellular Signal-Regulated MAP Kinases; Genes, Neurofibromatosis 2; Humans; Lung Neoplasms; Mesothelioma; Mesothelioma, Malignant; Naphthoquinones; Neurofibromin 2; Phosphatidylethanolamine Binding Protein; Silicon Dioxide; Snail Family Transcription Factors; Transcription Factors; Transfection; Tumor Suppressor Protein p53

2015
2-Methoxy-1,4-naphthoquinone (MNQ) induces apoptosis of A549 lung adenocarcinoma cells via oxidation-triggered JNK and p38 MAPK signaling pathways.
    Life sciences, 2015, Aug-15, Volume: 135

    The compound 2-methoxy-1,4-naphthoquinone (MNQ) was previously shown to be cytotoxic against several cancer cell lines, but its mode of action is poorly understood. In this study, we aimed to explore the molecular mechanism of MNQ-induced cytotoxicity of A549 lung adenocarcinoma cells.. The growth inhibition potential of MNQ was analyzed using sulforhodamine B assay, flow cytometry cell cycle analysis and Annexin V apoptosis assay. Oxidative stress was determined using 2',7'-dichlorofluorescein diacetate to measure intracellular reactive oxygen species level and comet assay to measure DNA damage. Western blotting was performed to study the activation of mitogen-activated protein kinase signaling pathways.. MNQ induced apoptosis of A549 cells independent of cell cycle arrest, and is mediated by the JNK and p38 MAPK signaling pathways. Further analysis demonstrated that these signaling pathways were stimulated by oxidative DNA damage caused by increased ROS generation in MNQ-treated A549 cells.. This study is the first to provide an insight into the molecular mechanism of MNQ-induced cytotoxicity of a lung cancer cell, which demonstrates the potential of MNQ as a potential chemotherapeutic drug for lung cancer treatment.

    Topics: Adenocarcinoma; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cytotoxins; DNA Damage; Humans; Lung Neoplasms; MAP Kinase Kinase 4; MAP Kinase Signaling System; Naphthoquinones; Neoplasm Proteins; Oxidation-Reduction; Oxidative Stress; p38 Mitogen-Activated Protein Kinases

2015
Beta-Lapachone Suppresses Non-small Cell Lung Cancer Proliferation through the Regulation of Specificity Protein 1.
    Biological & pharmaceutical bulletin, 2015, Volume: 38, Issue:9

    Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) is the most common pathological type with a reported frequency of about 85% of all cases. Despite recent advances in therapeutic agents and targeted therapies, the prognosis for NSCLC remains poor, and therefore it is important to identify the biological targets of this complex disease since a blockade of such targets would affect multiple downstream signaling cascades. β-Lapachone (β-Lap) is an antiproliferative agent that selectively induces apoptosis-related cell death in a variety of human cancer cells. However, the mechanisms of its action require further investigation. In this study, we show that treatment with β-lap triggers apoptosis and cell-cycle arrest in two NSCLC cell lines: H1299 and NCI-H358. The transcription factor specificity protein 1 (Sp1) was markedly inhibited by β-lap in a dose- and time-dependent manner. Furthermore, β-lap modulated the protein expression levels of the Sp1 regulatory genes, including cell-cycle regulatory proteins and antiapoptotic proteins, resulting in apoptosis. Taken together, our results indicate that β-lap may be a potential antiproliferative agent candidate by inducing apoptotic cell death in NSCLC tissue through downregulation of Sp1.

    Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Survival; Humans; Lung Neoplasms; Naphthoquinones; Sp1 Transcription Factor

2015
β-Lapachone and Paclitaxel Combination Micelles with Improved Drug Encapsulation and Therapeutic Synergy as Novel Nanotherapeutics for NQO1-Targeted Cancer Therapy.
    Molecular pharmaceutics, 2015, Nov-02, Volume: 12, Issue:11

    β-Lapachone (LPC) is a novel cytotoxic agent that is bioactivated by NADP(H): quinone oxidoreductase 1 (NQO1), an enzyme elevated in a variety of tumors, such as non-small cell lung cancer (NSCLC), pancreatic cancer, liver cancer, and breast cancer. Despite its unique mechanism of action, its clinical evaluation has been largely hindered by low water solubility, short blood half-life, and narrow therapeutic window. Although encapsulation into poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-PLA) micelles could modestly improve its solubility and prolong its half-life, the extremely fast intrinsic crystallization tendency of LPC prevents drug loading higher than ∼2 wt %. The physical stability of the LPC-loaded micelles is also far from satisfactory for further development. In this study, we demonstrate that paclitaxel (PTX), a front-line drug for many cancers, can provide two functions when coencapsulated together with LPC in the PEG-PLA micelles; first, as a strong crystallization inhibitor for LPC, thus to significantly increase the LPC encapsulation efficiency in the micelle from 11.7 ± 2.4% to 100.7 ± 2.2%. The total drug loading efficiency of both PTX and LPC in the combination polymeric micelle reached 100.3 ± 3.0%, and the drug loading density reached 33.2 ± 1.0%. Second, the combination of LPC/PTX demonstrates strong synergistic cytotoxicity effect against the NQO1 overexpressing cancer cells, including A549 NSCLC cells, and several pancreatic cancer cells (combination index <1). In vitro drug release study showed that LPC was released faster than PTX either in phosphate-buffered saline (PH = 7.4) or in 1 M sodium salicylate, which agrees with the desired dosing sequence of the two drugs to exert synergistic pharmacologic effect at different cell checkpoints. The PEG-PLA micelles coloaded with LPC and PTX offer a novel nanotherapeutic, with high drug loading, sufficient physical stability, and biological synergy to increase drug delivery efficiency and optimize the therapeutic window for NOQ1-targeted therapy of cancer.

    Topics: Anti-Infective Agents; Antineoplastic Agents, Phytogenic; Apoptosis; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Synergism; Drug Therapy, Combination; Humans; Lung Neoplasms; Micelles; NAD(P)H Dehydrogenase (Quinone); Nanotechnology; Naphthoquinones; Paclitaxel; Pancreatic Neoplasms; Polymers; Tumor Cells, Cultured

2015
The mechanism of radiosensitization by YM155, a novel small molecule inhibitor of survivin expression, is associated with DNA damage repair.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2015, Volume: 37, Issue:3

    Survivin, a member of the inhibitor of apoptosis protein family, is an attractive target for cancer therapy. We investigated the effects of YM155, a small molecule inhibitor of survivin expression, on the radiosensitivity of human non-small cell lung cancer (NSCLC) cell lines and elucidated a relationship between the cellular localization of survivin and DNA double-strand break repair.. The cellular distribution of survivin was determined by Western blotting of subcellular fractions and by immunofluorescent staining in A549 NSCLC cells. Radiation-induced DNA damage was evaluated based on histone H2AX phosphorylation and foci formation. The relationship between the cellular localization of survivin and DNA double-strand break repair was analyzed by Western blotting and co-immunoprecipitations.. YM155 down-regulated survivin expression in NSCLC cells in a concentration- and time-dependent manner. An in vitro clonogenic survival assay revealed that YM155 increased the sensitivity of NSCLC cells to radiation. After irradiation, we observed a rapid accumulation of survivin in the nucleus. An immunofluorescent analysis of histone x03B3;-H2AX demonstrated that the inhibition of survivin expression by YM155 resulted in impaired DNA double-strand break repair. Co-immunoprecipitation assays using nuclear extracts revealed an interaction between survivin, Ku70, x03B3;-H2AX, and DNA-PKcs. Furthermore, S2056 autophosphorylation of DNA-PKcs was reduced in survivin-depleted cells.. These results suggested that YM155 sensitized NSCLC cells to radiation, at least in part by inhibiting DNA repair and enhancing apoptosis via the down-regulation of survivin expression. YM155 pretreatment inhibited DNA-PKcs autophosphorylation at S2056. Nuclear survivin was involved in DNA double-strand break repair via interactions with members of the DNA double-strand break repair machinery.

    Topics: Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Nucleus; Cell Survival; DNA Breaks, Double-Stranded; DNA Repair; Dose-Response Relationship, Drug; Down-Regulation; Gene Expression Regulation, Neoplastic; Histones; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Naphthoquinones; Phosphorylation; Radiation-Sensitizing Agents; Survivin

2015
Activity guided isolation and modification of juglone from Juglans regia as potent cytotoxic agent against lung cancer cell lines.
    BMC complementary and alternative medicine, 2015, Nov-03, Volume: 15

    Juglans regia has been found to exhibit significant anticancer activity against various human cancer cell lines. This study was undertaken to isolate the active chemical constituent (Juglone) and to investigate its cytotoxic activity along with its various analogs against different human cancer cell lines.. Isolation of juglone, a napthoquinone, from the chloroform extract of the root part of Juglans regia was executed by flash chromatography using silica gel as stationary phase. The isolated Juglone was used as starting material for the further synthesis of a novel series of triazolyl analogs using click chemistry approach to investigate their cytotoxic potential against different human cancer cell lines using 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) assay.. The different extracts of Juglans regia and the isolated compound (juglone) exhibited satisfactory cytotoxic activity against a panel of eight different human cancer cell lines namely, prostate colon (Colo-205 and HCT-116), breast (T47D), prostate (PC-3 and DU-145), skin (A-431) and lung (NCI-H322 and A549). Interestingly, all the synthesised analogs displayed enhanced and selective cytotoxic activity against lung cancer cell lines only. Of the synthesized derivatives, 15a and 16a displayed the best activity with IC50 of 4.72 and 4.67 μM against A549 cells. Both these derivatives exhibited superior potency to BEZ-235 against both the lung cancer cell lines. So far as the structural aspects are concerned, electron withdrawing substituents at the ortho position of R moiety of the triazolyl analogs seem to be essential for attaining better activity.. The present study demonstrates the selective and enhanced cytotoxic activity of the triazolyl analogs of juglone against NCI-H322 and A549 human lung cancer cell lines. Some derivatives exhibited superior potency to BEZ-235, a commercially available anticancer agent.

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Humans; Juglans; Lung Neoplasms; Naphthoquinones; Plant Extracts

2015
Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells.
    Cancer letters, 2014, Mar-28, Volume: 344, Issue:2

    Plumbagin (PLB) has shown anti-cancer activity but the mechanism is unclear. This study has found that PLB has a potent pro-apoptotic and pro-autophagic effect on A549 and H23 cells. PLB arrests cells in G2/M phase, and increases the intracellular level of reactive oxygen species in both cell lines. PLB dose-dependently induces autophagy through inhibition of PI3K/Akt/mTOR pathway as indicated by reduced phosphorylation of Akt and mTOR. Inhibition or induction of autophagy enhances PLB-induced apoptosis. There is crosstalk between PLB-induced apoptosis and autophagy. These findings indicate that PLB initiates both apoptosis and autophagy in NSCLC cells through coordinated pathways.

    Topics: Apoptosis; Autophagy; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Humans; Lung Neoplasms; MAP Kinase Signaling System; Naphthoquinones; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Proto-Oncogene Proteins c-akt; TOR Serine-Threonine Kinases

2014
Alteronol inhibits the invasion and metastasis of B16F10 and B16F1 melanoma cells in vitro and in vivo.
    Life sciences, 2014, Mar-07, Volume: 98, Issue:1

    The purpose of this study is to evaluate the anti-metastatic effects of alteronol on melanoma B16F10 and B16F1 cells in vitro and in vivo.. Melanoma B16F1 and B16F10 cells were cultured in vitro. Cell proliferation was analyzed via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The cell migration and invasion were evaluated via wound healing and transwell chamber assays. The activity of matrix metalloproteinase 2 (MMP-2) in culture supernatants was assessed via gelatin zymography. The expression of MMP-2 and TIMP-2 were detected via enzyme-linked immunosorbent assay (ELISA) assay. The anti-metastatic ability in vivo was detected through experimental lung metastasis.. The data indicate that alteronol can inhibit the proliferation, invasion, and migration of B16F1 and B16F10 cells in vitro and in vivo, decrease the activity and expression of MMP-2, enhance the expression level of Tissue Inhibitor of Metalloproteinase-2 (TIMP-2), and inhibit the experimental lung metastasis of B16F1 and B16F10 cells.. Although alteronol and taxol are obtained from the same source, these substances do not destroy the rare resource; the mechanisms of them on tumor growth inhibition are different. Conversely, alteronol treatment had lesser effects on normal cells revealing for a selective property and a strong competitive advantage.

    Topics: Animals; Cell Line, Tumor; Cell Movement; Cell Survival; Enzyme Activation; Lung Neoplasms; Matrix Metalloproteinase 2; Melanoma; Mice; Molecular Structure; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Metastasis

2014
Sulindac compounds facilitate the cytotoxicity of β-lapachone by up-regulation of NAD(P)H quinone oxidoreductase in human lung cancer cells.
    PloS one, 2014, Volume: 9, Issue:2

    β-lapachone, a major component in an ethanol extract of Tabebuia avellanedae bark, is a promising potential therapeutic drug for various tumors, including lung cancer, the leading cause of cancer-related deaths worldwide. In the first part of this study, we found that apoptotic cell death induced in lung cancer cells by high concentrations of β-lapachone was mediated by increased activation of the pro-apoptotic factor JNK and decreased activation of the cell survival/proliferation factors PI3K, AKT, and ERK. In addition, β-lapachone toxicity was positively correlated with the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in the tumor cells. In the second part, we found that the FDA-approved non-steroidal anti-inflammatory drug sulindac and its metabolites, sulindac sulfide and sulindac sulfone, increased NQO1 expression and activity in the lung adenocarcinoma cell lines CL1-1 and CL1-5, which have lower NQO1 levels and lower sensitivity to β-lapachone treatment than the A549 cell lines, and that inhibition of NQO1 by either dicoumarol treatment or NQO1 siRNA knockdown inhibited this sulindac-induced increase in β-lapachone cytotoxicity. In conclusion, sulindac and its metabolites synergistically increase the anticancer effects of β-lapachone primarily by increasing NQO1 activity and expression, and these two drugs may provide a novel combination therapy for lung cancers.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Cell Line, Tumor; Drug Synergism; Humans; Lung Neoplasms; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Sulindac; Up-Regulation

2014
Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin.
    Cell biochemistry and biophysics, 2014, Volume: 70, Issue:2

    Shikonin, a natural naphthoquinone isolated from a traditional Chinese medicinal herb, can exert inhibitory effect on tumor cell growth. However, little has been known concerning the effect of shikonin on lung adenocarcinoma cell and underlying mechanisms. In the present study, we investigated the effect of shikonin on the proliferation, cell cycle arrest, and apoptosis in human lung adenocarcinoma cells. We found that shikonin significantly suppressed the proliferation of lung adenocarcinoma cells compared with control in dose- and time-dependent manner (P < 0.05). In the meantime, our results showed that shikonin markedly increased the proportion of A549 cells at stage G1 as well as induced apoptosis in A549 cells. Furthermore, suppressed CCND1 and elevated caspase3 and caspase7 expression levels at mRNA were found in this study, indicating that shikonin may inhibit the growth of lung adenocarcinoma cell by changing cell cycle and promoting cell apoptosis through the regulation of CCND1, caspase3, and caspase7. Although more studies are needed, this study suggests that shikonin has the potential to be used as an anti-cancer agent in the treatment of lung adenocarcinoma.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Antineoplastic Agents; Apoptosis; Caspases; Cell Line, Tumor; Cell Proliferation; Enzyme Activation; G1 Phase Cell Cycle Checkpoints; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Naphthoquinones; Resting Phase, Cell Cycle

2014
Cytotoxic activity against small cell lung cancer cell line and chromatographic fingerprinting of six isolated compounds from the ethanolic extract of Benjakul.
    Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 2014, Volume: 97 Suppl 8

    Benjakul, a Thai traditional herbal preparation, comnprises five plants: Piper chaba, Piper sarmentosum, Piper interruptum, Plumbago indica, and Zingiber officinale. It has widely been used to treat cancer patients in folk medicine in Thailand. Benjakul extract, and its isolated compounds should be investigated for cytotoxic activity and analysis isolated compounds from chemical fingerprinting.. To study cytotoxicity ofBenjakul extract and its isolatedpure compounds against human small cell lung cancer cell line (NCI-HI 688) and in normal human lungfibroblast cell line (MRC-5) and analysis the content ofisolated compounds for quality control of Benjakul extract.. Bioassay-guided fractionation was used for isolated active compounds from ethanolic extract of Benjakul. Cytotoxic activity was carried using the SRB assay. HPLC method was applied to analyze six isolated compound contentfrom Benjakul extract.. The ethanolic extract ofBenjakul showed cytotoxicity against NCI-H1688 with IC50 value = 36.15±4.35 μg/ml. Hexane fraction as semi-separation by VLC showed the best cytotoxic activity (21.1 7±7.42 μg/ml). Six isolated compounds were identified as myristicin, plumbagin, methyl piperate, 6-shogaol, 6-gingerol and piperine. Plumbagin exhibited the highest cytotoxic activity and 6-shogaol was the second most effective cytotoxic constituent (IC50 values = 1.41±0.01 and 6.45±0.19 μg/ml, respectively). Piperine showed the highest content in both ofHPLC analysis and column chromatography separation.. Benjakul extract exhibited cytotoxicity against NCI-HI 688. Plumbagin and 6-shogaol are bioactive markers for cytotoxicity against this small cell lung cancer cell line. Chromatographic fingerprinting can be used to analyze six cytotoxic compounds isolatedfrom the ethanolic extract ofBenjakul.

    Topics: Alkaloids; Benzodioxoles; Catechols; Cell Line, Tumor; Chromatography, High Pressure Liquid; Drug Screening Assays, Antitumor; Ethanol; Fatty Alcohols; Humans; Lung Neoplasms; Medicine, Traditional; Naphthoquinones; Piper; Piperidines; Plant Extracts; Plumbaginaceae; Polyunsaturated Alkamides; Small Cell Lung Carcinoma; Thailand; Zingiber officinale

2014
Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway.
    Toxicology, 2013, Jun-07, Volume: 308

    Integrin β1 facilitates cancer cell adhesion, migration and metastasis by activating intracellular signaling pathways including the ERK and PI3K signaling pathways. In previous studies, shikonin, an active naphthoquinone isolated from the Chinese medicine Zi Cao (gromwell), showed effective anticancer activity both in vivo and in vitro. However, the mechanisms underlying shikonin's anticancer activity are not fully elucidated. Increasing evidence indicates that shikonin inhibits tumor metastasis, but little is known about the effect of shikonin on lung cancer cells. To better understand the anti-metastatic role of shikonin in lung cancer, in this study we sought to investigate the effect of shikonin on lung cancer cell proliferation, adhesion to extracellular matrices (ECM), migration and invasion in non-small cell lung cancer A549 cells. We also sought to investigate the molecular mechanisms underlying shikonin's anticancer effects. Here we showed that when non-small cell lung cancer A549 cells were treated with shikonin for 24h, 8.0μM shikonin significantly inhibited cell proliferation, while cells treated with less than 2.0μM shikonin for 24h significantly suppressed cell adhesion to the ECM, invasion and migration in a dose-dependent manner. Moreover, real-time PCR and Western blot analysis showed that shikonin led to a reduction in the expression of integrin β1 at the mRNA and protein levels. Further elucidation of the mechanisms involved revealed that shikonin repressed the phosphorylation of extracellular signal-regulated kinase (ERK1/2). Taken together, our findings provide new evidence that shikonin suppresses lung cancer invasion and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway.

    Topics: Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; Cell Adhesion; Cell Line, Tumor; Extracellular Matrix; Gene Expression Regulation, Neoplastic; Humans; Integrin beta1; Lung Neoplasms; MAP Kinase Signaling System; Naphthoquinones

2013
Plumbagin from Plumbago Zeylanica L induces apoptosis in human non-small cell lung cancer cell lines through NF- κB inactivation.
    Asian Pacific journal of cancer prevention : APJCP, 2013, Volume: 14, Issue:4

    To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms.. Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-κB was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-κB regulated apoptotic-related gene and activation of p65 and IκBκ.. Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 μmol/L, 7.3 μmol/L, and 6.1 μmol/L for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-κB. In addition to inhibition of NF-κB/p65 nuclear translocation, the compound also suppressed the degradation of IκBκ. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-κB in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC.. Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-κB-regulated mitochondrial-mediated pathway, involving activation of ROS.

    Topics: Apoptosis; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Electrophoretic Mobility Shift Assay; Humans; Luciferases; Lung Neoplasms; Naphthoquinones; NF-kappa B; Plumbaginaceae; Protein Transport; Superoxides; Tumor Cells, Cultured

2013
Inhibition of metastatic potential of B16-F10 melanoma cell line in vivo and in vitro by biflorin.
    Life sciences, 2013, Aug-14, Volume: 93, Issue:5-6

    The aim of this study was to determine the antimetastatic potential of biflorin using in vivo and in vitro approaches.. Biflorin was isolated from Capraria biflora collected in Fortaleza, Ceará, Brazil. Adhesion, migration and invasion assays were performed to avail of the antimetastatic potential of this quinone. Experimental metastasis was performed to avail of the antimetastatic potential of bilflorin using in vivo assay.. Treatment with biflorin (25 and 50mg/kg/day) was shown to be effective in reducing B16-F10 melanoma metastasis in C57BL/6 mice. The administration of biflorin at 25mg/kg/day intraperitoneally inhibited the formation of metastases by about 57% compared to untreated control animals. When the animals were treated with 50mg/kg/day intraperitoneally, there was a 71% decrease in the number of lung metastases. Morphological assays showed the presence of hemosiderin and erythrocytes in the lung parenchyma, indicating the occurrence of hemorrhage, probably a side effect of biflorin. Biflorin at non-toxic concentrations (0.5, 1.0 and 1.5g/mL) was tested directly on B16-F10 cells in vitro, and it inhibited cell adhesion to type I collagen and cell motility using the wound-healing assay.. These data suggest that biflorin has a promising antimetastatic potential, as shown by its anti-adhesion, anti-migration and anti-invasion properties against a metastatic melanoma cell line. However, further studies are essential to elucidate its mechanism of action.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Female; Lung Neoplasms; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Naphthoquinones; Neoplasm Invasiveness; Plant Extracts; Random Allocation; Scrophulariaceae

2013
Anti-angiogenic activity of salvicine.
    Pharmaceutical biology, 2013, Volume: 51, Issue:8

    Salvicine is a pharmacologically active derivative from Chinese medicinal plant Salvia prionitis Hance (Labiatae). It has been reported that salvicine inactivates β1 integrin and inhibits integrin-mediated cell adhesion to fibronectin. Given the emerging correlation between integrins and angiogenesis, we propose that salvicine abolishes cell adhesion and subsequent metastasis by inhibiting angiogenisis.. The anti-angiogenesis activities of salvicine were investigated for the first time.. The cytotoxicity of salvicine on human microvascular endothelial cells (HMECs) and non-small cell lung adenocarcinoma A549 cells were measured at doses between 0.625 and 200 µM. Changes of cell migration were detected with doses of salvicine at 1.25-5 µM, and basement membrane matrigel matrix was used for the assessment of tube formation at concentrations ranging from 0.078 to 1.25 µM. In addition, mRNA expression of basic fibroblast growth factor (bFGF) in A549 cells was studied with the RT-PCR assay.. In vitro studies revealed that the IC50 of salvicine on A549 cells (18.66 µM) was two-fold higher than that of HMECs (7.91 µM). Salvicine (1.25, 2.5 and 5.0 μM) inhibited significantly the endothelial cell migration up to 56, 73 and 82%, respectively. Salvicine decreased capillary-like tube formation of HMECs with high potency. Furthermore, it (30 µM) markedly reduced the mRNA expression of bFGF in A549 cells, while vascular endothelial growth factor (VEGF) mRNA expression remained unchanged.. Our results suggest that salvicine has potent anti-angiogenic activity through the inhibition on the sequential angiogenic cascades: proliferation, migration and tube formation and is associated with influence on the expression of bFGF of tumor cell.

    Topics: Adenocarcinoma; Angiogenesis Inhibitors; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cells, Cultured; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Endothelium, Vascular; Fibroblast Growth Factor 2; Gene Expression Regulation, Neoplastic; Humans; Inhibitory Concentration 50; Lung Neoplasms; Naphthoquinones; Neovascularization, Pathologic; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Salvia

2013
Novel compound PS-101 exhibits selective inhibition in non-small-cell lung cancer cell by blocking the EGFR-driven antiapoptotic pathway.
    Biochemical pharmacology, 2013, Dec-15, Volume: 86, Issue:12

    This study investigated the anticancer effect of a novel compound PS-101 in human lung cancer cells. By phenotype screening, PS-101 exhibited highly selective inhibition in EGFR-overexpressed non-small cell lung cancer cells NCI-H460 and A549 while displaying no obvious toxicity to normal hepatic cell HL-7702, lung fibroblast cell WI-38, liver cancer cell BEL-7404 and gastric cancer cell MCG-803. A combination of cell viability assay, immunoblotting, and RNA interference revealed that PS-101 induced EGFR-dependent inhibition selectivity. Further studies showed that PS-101 caused cell cycle arrest at G1 phase, changed cell size, induced apoptosis and led to cell death by increasing the proportion of sub-G1 cells. Molecular mechanism studies suggested that blocking the EGFR-driven antiapoptotic pathway is essential for PS-101-induced apoptosis. The contribution of blocking the EGFR-driven antiapoptotic pathway was verified through examines abundance of likely candidate proteins and RNA interference. The root cause for increase in BAD and decrease in Bcl-2 which altogether initiated caspase-dependent apoptosis were predominantly due to down-regulation the expression of EGFR after PS-101 treatment. PS-101 strongly down-regulated the EGFR expression to trigger proapototic protein BAD increase and antiproapototic protein Bcl-2 decrease, which altogether actived effector caspase-3/9 to initiate cell apoptisis. Taken together, these results suggest that PS-101 may be a potential candidate for cancer therapy against human lung cancer.

    Topics: Amino Sugars; Antineoplastic Agents; Apoptosis; Base Sequence; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; DNA Primers; Down-Regulation; ErbB Receptors; Humans; Lung Neoplasms; Naphthoquinones; Real-Time Polymerase Chain Reaction; Transcription, Genetic

2013
The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis.
    BMC cancer, 2013, Dec-06, Volume: 13

    Osteosarcoma is the most frequent primary malignant bone tumor, notorious for its lung metastasis. Shikonin, an effective constituent extracted from Chinese medicinal herb, was demonstrated to induce necroptosis in some cancers.. MTT assay was performed to detect cell survival rate in vitro. Flow cytometry was used to analyze cell cycle and cell death. Western blot was performed to determine the expression levels of RIP1, RIP3, caspase-3, caspase-6 and PARP. The tibial primary and lung metastatic osteosarcoma models were used to evaluate the anti-tumor effect of shikonin in vivo.. The cell survival rate was decreased in a dose and time dependent manner when treated with shikonin. No major change in cell cycle was observed after shikonin treatment. The cell death induced by shikonin could be mostly rescued by specific necroptosis inhibitor necrostatin-1, but not by general caspase inhibitor Z-VAD-FMK. The number of necrotic cells caused by shikonin was decreased after being pretreated with Nec-1 detected by flow cytometry in K7 cells. After 8-hour treatment of shikonin, the expression levels of RIP1 and RIP3 were increased while caspase-3, caspase-6 and PARP were not activated in K7 and U2OS cells determined by Western blot. Size of primary tumor and lung metastasis in shikonin treated group were significantly reduced. The protein levels of RIP1 and RIP3 in primary tumor tissues were increased by shikonin. The overall survival of lung metastatic models was longer compared with control group (p < 0.001).. Shikonin had prompt but profound anti-tumor effect on both primary and metastatic osteosarcoma, probably by inducing RIP1 and RIP3 dependent necroptosis. Shikonin would be a potential anti-tumor agent on the treatment of primary and metastatic osteosarcoma.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Bone Neoplasms; Cell Line, Tumor; Cell Survival; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Female; Humans; Lung Neoplasms; Mice; Mice, Inbred BALB C; Naphthoquinones; Necrosis; Neoplasm Transplantation; Nuclear Pore Complex Proteins; Osteosarcoma; Receptor-Interacting Protein Serine-Threonine Kinases; RNA-Binding Proteins; Up-Regulation

2013
In vitro cytotoxic activity of Benjakul herbal preparation and its active compounds against human lung, cervical and liver cancer cells.
    Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 2012, Volume: 95 Suppl 1

    Benjakul [BEN], a Thai Traditional medicine preparation, is composed of five plants: Piper chaba fruit [PC], Piper sarmentosum root [PS], Piper interruptum stem [PI], Plumbago indica root [PL] and Zingiber officinale rhizome [ZO]. From selective interviews of folk doctors in Southern Thailand, it was found that Benjakul has been used for cancer patients.. To investigate cytotoxicity activity of Benjakul preparation [BEN] and its ingredients against three human cancer cell lines, large lung carcinoma cell line (COR-L23), cervical cancer cell line (Hela) liver cancer cell line (HepG2) as compared with normal lungfibroblast cell (MRC-5) by using SRB assay.. The extraction as imitated the method used by folk doctors was done by maceration in ethanol and boiling in water Bioassay guided isolation was used isolated cytotoxic compound.. The ethanolic extracts of PL, ZO, PC, PS, BEN and PS showed specific activity against lung cancer cell (IC50 = 3.4, 7.9, 15.8, 18.4, 19.8 and 32.91 microg/ml) but all the water extracts had no cytotoxic activity. Three active ingredients [6-gingerol, plumbagin and piperine as 0.54, 4.18 and 7.48% w/w yield of crude extract respectively] were isolated from the ethanolic extract of BEN and they also showed cytotoxic activity with plumbagin showing the highest cytotoxic activity against COR-L23, HepG2, Hela and MRC-5 (IC50 = 2.55, 2.61, 4.16 and 11.54 microM respectively).. These data results may support the Thai traditional doctors who are using Benjakul to treat cancer patients and three of its constituents (6-gingerol, plumbagin and piperine) are suggested to be used as biomarkers for standardization of this preparation.

    Topics: Alkaloids; Benzodioxoles; Catechols; Cell Line, Tumor; Fatty Alcohols; Female; Humans; Liver Neoplasms; Lung Neoplasms; Medicine, East Asian Traditional; Naphthoquinones; Phytotherapy; Piper; Piperidines; Plant Extracts; Plants, Medicinal; Plumbaginaceae; Polyunsaturated Alkamides; Thailand; Uterine Cervical Neoplasms; Zingiber officinale

2012
Inhibitory effect of liposomal rhinacanthin-N isolated from Rhinacanthus nasutus on pulmonary metastasis in mice.
    Biological & pharmaceutical bulletin, 2012, Volume: 35, Issue:7

    We previously observed that rhinacanthins, which are the main naphthoquinone esters isolated from the roots of a Thai medicinal plant, Rhinacanthus nasutus KURZ. (family Acanthaceae), suppress the growth of Meth-A sarcoma in the tumor-bearing mice and that rhinacanthin-N has the strongest antitumor activity among these naphthoquinone esters tested. In the present study, we investigated the effect of rhinacanthin-N on pulmonary metastasis induced by B16F10 melanoma cells in mice. C57BL/6 male mice were injected intravenously with B16F10 melanoma cells, and liposomal rhinacanthin-N was administered intraperitoneally from day 1 to 7 after tumor implantation. Liposomes were used to formulate an injectable form of the hydrophobic agent. Treatment of the mice with 5 or 10 mg/kg/d of liposomal rhinacanthin-N significantly inhibited the pulmonary metastatic colonization of the melanoma cells. Based on these data, our findings demonstrate that rhinacanthin-N possesses antimetastatic efficacy, which may make it a lead compound for the development of a new anticancer drug for use in cancer chemotherapy.

    Topics: Acanthaceae; Animals; Antineoplastic Agents; Cell Proliferation; Liposomes; Lung Neoplasms; Male; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Naphthoquinones; Plant Roots

2012
Peptidyl prolyl isomerase, Pin1 is a potential target for enhancing the therapeutic efficacy of etoposide.
    Current cancer drug targets, 2011, Volume: 11, Issue:3

    The peptidyl prolyl isomerase (Pin1) that induces cis-trans isomerization of the peptide bond involving serine/threonine-proline has recently been shown to regulate the activity of many phosphoproteins including the ones involved in damage response pathways. We investigated Pin1 as a potential target for enhancing the efficacy of anticancer therapy by studying the effects of juglone, a Pin1 inhibitor on the cytotoxicity of etoposide (a widely used anticancer drug that targets topoisomerase IIα) in human tumor cell lines. Treatment of cells with juglone synergistically enhanced the cytotoxicity of etoposide (loss of clonogenicity) with a tenfold increase when etoposide treatment preceded juglone exposure. On the other hand, the toxicity was than additive when the treatment protocol was reversed (i.e exposure to juglone followed by etoposide treatment). This suggests that Pin1 inhibition possibly reduces the induction of initial DNA damage by etoposide, which was supported by a decrease in the levels of chromatin bound topoIIα. Increase in the etoposide induced toxicity by juglone appeared to be mainly due to enhanced mitotic cell death linked to cytogenetic damage, although a moderate increase in interphase (apoptotic) death was also evident as revealed by DNA degradation (hypodiploid population and TUNEL assay). Since the level of Pin1 is found to be higher in cancer cells, this enzyme could be a potential target for developing an adjuvant to enhance the efficacy of anticancer therapies.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Blotting, Western; Cell Cycle; Cell Proliferation; DNA Damage; Drug Synergism; Enzyme Inhibitors; Etoposide; Flow Cytometry; Humans; Lung Neoplasms; Micronucleus Tests; Naphthoquinones; NIMA-Interacting Peptidylprolyl Isomerase; Peptidylprolyl Isomerase; Tumor Cells, Cultured; Tumor Stem Cell Assay

2011
YM155, a novel survivin suppressant, enhances taxane-induced apoptosis and tumor regression in a human Calu 6 lung cancer xenograft model.
    Anti-cancer drugs, 2011, Volume: 22, Issue:5

    Survivin, an apoptotic inhibitor, is overexpressed in the majority of human tumor types and represents a novel target for anticancer therapy. Taxanes induce a mitotic cell-cycle block through the inhibition of microtubule depolymerization, with subsequent elevated expression/stabilization of survivin. We investigated the administration of survivin suppressant YM155 monobromide (YM155), in combination with docetaxel, in a human non-small-cell lung cancer (NSCLC) xenograft model. Animals received a 7-day continuous infusion of YM155, 2 mg/kg, and/or three bolus doses of docetaxel, 20 mg/kg, according to three dosing schedules: YM155 administered concomitantly with docetaxel, before docetaxel, and after docetaxel. YM155 administered either concomitantly with or before docetaxel showed significant antitumor activity (tumor regression ≥ 99%), with complete regression of the established human NSCLC-derived tumors in mice (eight of eight and seven of eight animals, respectively). Significantly fewer complete responses (three of eight animals) were achieved when YM155 was administered after docetaxel. No statistically significant decreases in body weight were observed in the combination versus docetaxel groups. YM155 administered concomitantly with docetaxel resulted in significant decreases in mitotic and proliferative indices, and in a significant increase in the apoptosis index. Elevated survivin expression was seen in tumors from mice treated with docetaxel alone; a significant reduction in survivin expression was seen in tumors from mice treated with YM155 alone or in combination with docetaxel, but not in the control group. These results indicate that in a human NSCLC xenograft model YM155 in combination with docetaxel diminished the accumulation of survivin by docetaxel and induced more intense apoptosis and enhanced antitumor activity, compared with single-agent YM155 or docetaxel.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Docetaxel; Drug Synergism; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Male; Mice; Mice, Nude; Mitosis; Naphthoquinones; Survivin; Taxoids; Xenograft Model Antitumor Assays

2011
Synthesis and evaluation of mansonone F derivatives as topoisomerase inhibitors.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:8

    A series of mansonone F (MF) derivatives were designed and synthesized. These compounds were found to be strong inhibitors for topoisomerases, with much more significant inhibition for topoisomerase II rather than topoisomerase I. The best inhibitor showed 20 times stronger anti-topoisomerase II activity than a positive control Etoposide. The cytotoxic activity of these MF derivatives was evaluated against human cancer cell lines CNE-2 and Glc-82, which showed that these compounds were potent antitumor agents. The structure-activity relationships (SARs) study revealed that o-quinone group and pyran ring are important for their cytotoxic activity.

    Topics: Adenocarcinoma; Adenocarcinoma of Lung; Antigens, Neoplasm; Antineoplastic Agents; Carcinoma; Cell Line, Tumor; Cell Survival; DNA; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; DNA-Binding Proteins; Drug Screening Assays, Antitumor; Etoposide; Humans; Inhibitory Concentration 50; Lung Neoplasms; Naphthoquinones; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Plasmids; Pyrans; Quinones; Sesquiterpenes; Structure-Activity Relationship; Telomerase; Topoisomerase Inhibitors

2011
Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-kappaB and AP-1 via ERK signaling pathway in A549 human lung cancer cells.
    Molecular and cellular biochemistry, 2010, Volume: 335, Issue:1-2

    This study first investigates the anti-metastatic effect of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMPs and u-PA expressions in human lung cancer cells, A549. First, the result demonstrated plumbagin could inhibit TPA induced the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay and Boyden chamber assay. Data also showed plumbagin could inhibit the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) involved in the down-regulating enzyme activities, protein and messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and urokinase-type plasminogen activator (u-PA) induced by TPA. Next, plumbagin also strongly inhibited TPA-induced phosphorylation and degradation of inhibitor of kappaBalpha (IkappaBalpha), and the nuclear levels of nuclear factor kappa B (NF-kappaB), c-Fos, and c-Jun. Also, a dose-dependent inhibition on the binding abilities of NF-kappaB and activator protein-1 (AP-1) by plumbagin treatment was further observed. Further, the treatment of specific inhibitor for ERK (U0126) to A549 cells could inhibit TPA-induced MMP-2 and u-PA expressions along with an inhibition on cell invasion and migration. Presented data reveals that plumbagin is a novel, effective, anti-metastatic agent that functions by down-regulating MMP-2 and u-PA gene expressions.

    Topics: Cell Line, Tumor; Humans; Lung Neoplasms; Matrix Metalloproteinase 2; Matrix Metalloproteinase Inhibitors; Mitogen-Activated Protein Kinase 3; Naphthoquinones; NF-kappa B; Phosphorylation; Signal Transduction; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Urokinase-Type Plasminogen Activator

2010
Naphtho[1,2-b]furan-4,5-dione inactivates EGFR and PI3K/Akt signaling pathways in human lung adenocarcinoma A549 cells.
    Life sciences, 2010, Jan-30, Volume: 86, Issue:5-6

    Naphtho[1,2-b]furan-4,5-dione (NFD), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. This study was performed to elucidate whether EGFR and PI3K signaling pathways are involved in NFD-induced apoptosis of human lung adenocarcinoma A549 cells.. The effect of NFD on cell viability and apoptosis was measured by the MTT assay and flow cytometry. The phosphorylation levels of EGFR and its regulatory molecules by NFD treatment were studied by immunoblots.. Immunoblot showed that NFD inhibited EGFR phosphorylation and the activation of PI3K/Akt, downstream molecules of EGFR pathway, in A549 cells. The levels of downstream targets of Akt, including phospho-glycogen synthase kinase-3beta (p-GSK-3beta), GSK-3beta, forkhead transcription factor (FKHR), and cyclin D1, were also reduced after NFD treatment. Moreover, inactivation of nuclear factor-kappaB (NFkappaB), modulation of IkappaKalpha/beta and IkappaBalpha, up-regulation of Bad and Bax, and down-regulation of anti-apoptotic proteins including phospho-Bad, Bcl-2, survivin, and XIAP were also found in NFD-treated cells. In addition, NFD treatment disrupted mitochondrial membrane potential (DeltaPsim) and resulted in release of mitochondrial cytochrome c and activation of both caspases-9 and caspase-3.. These findings indicate that EGFR and PI3K/Akt signaling pathways play important roles in NFD-induced apoptosis of A549 cells.

    Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Blotting, Western; Caspase 3; Caspase 9; Cell Line, Tumor; Cell Survival; Cytochromes c; Cytosol; ErbB Receptors; Flow Cytometry; Humans; Lung Neoplasms; Membrane Potential, Mitochondrial; Mitochondria; Molecular Structure; Naphthoquinones; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction

2010
The cytotoxic agents NSC-95397, brefeldin A, bortezomib and sanguinarine induce apoptosis in neuroendocrine tumors in vitro.
    Anticancer research, 2010, Volume: 30, Issue:1

    The aim of this study was to investigate the apoptosis resulting from NSC 95397, brefeldin A, bortezomib and sanguinarine in neuroendocrine tumor cell lines.. A multiparametric high-content screening assay for measurement of apoptosis was used. The human pancreatic carcinoid cell line, BON-1, human typical bronchial carcinoid cell line NCI-H727 and the human atypical bronchial carcinoid cell line NCI-H720 were tested. After incubation with cytotoxic drugs, the DNA-binding dye Hoechst 33342, fluorescein-tagged probes that covalently bind active caspase-3 and chloromethyl-X-rosamine to detect mitochondrial membrane potential were added. Image acquisition and quantitative measurement of fluorescence was performed using automated image capture and analysis instrument ArrayScan. In addition, nuclear morphology was examined on microscopic slides stained with May-Grunewald-Giemsa.. A time- and dose-dependent activation of caspase-3 and increase in nuclear fragmentation and condensation were observed for the drugs using a multiparametric apoptosis assay. These results were confirmed with nuclear morphological examination on microscopic slides.. NSC 95397, brefeldin A, bortezomib and sanguinarine induced caspase-3 activation with modest changes in nuclear morphology.

    Topics: Apoptosis; Benzophenanthridines; Boronic Acids; Bortezomib; Brefeldin A; Carcinoid Tumor; Carcinoma, Bronchogenic; Cell Line, Tumor; Drug Screening Assays, Antitumor; Humans; Isoquinolines; Lung Neoplasms; Naphthoquinones; Neuroendocrine Tumors; Pancreatic Neoplasms; Pyrazines

2010
Beta-lapachone suppresses radiation-induced activation of nuclear factor-kappaB.
    Experimental & molecular medicine, 2010, May-31, Volume: 42, Issue:5

    Anticancer effects of beta-lapachone (beta-lap) are due to generation of ROS and metabolic catastrophes as a result of NAD(P)H:quinone oxidoreductase (NQO1)-mediated futile cycling between the oxidized and reduced forms of beta-lap. It has been shown that NQO1 is also essential for the TNF-induced activation of NF-kappaB and that beta-lap suppresses the TNF-induced NF-kappaB activation. We investigated whether or not NQO1 is involved and beta-lap suppresses the radiation-induced NF-kappaB activation using A549 human lung cancer cells and NQO1-knock down A549 cells (shNQO1 A549 cells). Irradiation with 4 Gy markedly increased the DNA binding activity of NF-kappaB in A549 cells, but not in the shNQO1 A549 cells, thus demonstrating that NQO1 plays a pivotal role in irradiation-induced NF-kappaB activation. Treatment with 10 micronM beta-lap for 4 h almost completely abrogated the radiation-induced increase in NF-kappaB activation and the transcription of NF-kappaB target genes such as bcl2, gadd45beta and cyclinD1. Moreover, beta-lap markedly suppressed the activation of IkappaB kinase gamma (IKKgamma) and the subsequent phosphorylation of IkappaBalpha, thereby inhibiting NF-kappaB activation. It is concluded that beta-lap suppresses the radiation-induced activation of NF-kappaB by interrupting the involvement of NQO1 in the activation of NF-kappaB, thereby inhibiting the transcription of survival signals. The radiosensitization caused by beta-lap may, in part, be attributed to beta-lap-induced suppression of NF-kappaB activation.

    Topics: Antigens, Differentiation; Cell Line, Tumor; Cell Survival; Cyclin D1; Humans; I-kappa B Kinase; Lung Neoplasms; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; NF-kappa B; Proto-Oncogene Proteins c-bcl-2; Radiation-Sensitizing Agents; Radiation, Ionizing

2010
Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy.
    Cancer research, 2010, May-15, Volume: 70, Issue:10

    Lung cancer is the leading cause of cancer-related deaths with current chemotherapies lacking adequate specificity and efficacy. Beta-lapachone (beta-lap) is a novel anticancer drug that is bioactivated by NAD(P)H:quinone oxidoreductase 1, an enzyme found specifically overexpressed in non-small cell lung cancer (NSCLC). Herein, we report a nanotherapeutic strategy that targets NSCLC tumors in two ways: (a) pharmacodynamically through the use of a bioactivatable agent, beta-lap, and (b) pharmacokinetically by using a biocompatible nanocarrier, polymeric micelles, to achieve drug stability, bioavailability, and targeted delivery. Beta-lap micelles produced by a film sonication technique were small ( approximately 30 nm), displayed core-shell architecture, and possessed favorable release kinetics. Pharmacokinetic analyses in mice bearing subcutaneous A549 lung tumors showed prolonged blood circulation (t(1/2), approximately 28 h) and increased accumulation in tumors. Antitumor efficacy analyses in mice bearing subcutaneous A549 lung tumors and orthotopic Lewis lung carcinoma models showed significant tumor growth delay and increased survival. In summary, we have established a clinically viable beta-lap nanomedicine platform with enhanced safety, pharmacokinetics, and antitumor efficacy for the specific treatment of NSCLC tumors.

    Topics: Animals; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Carriers; Female; Humans; Lung Neoplasms; Mice; Mice, Nude; Micelles; NAD(P)H Dehydrogenase (Quinone); Nanomedicine; Naphthoquinones; Survival Rate; Tissue Distribution; Xenograft Model Antitumor Assays

2010
Marked anti-tumour activity of the combination of YM155, a novel survivin suppressant, and platinum-based drugs.
    British journal of cancer, 2010, Jun-29, Volume: 103, Issue:1

    Survivin, a member of the inhibitor of apoptosis protein family, is an attractive target for cancer therapy. We have now investigated the effects of the combination of YM155, a novel small-molecule inhibitor of survivin expression, and platinum compounds (cisplatin and carboplatin) on human non-small cell lung cancer (NSCLC) cell lines.. The anti-cancer efficacy of YM155 in combination with platinum compounds was evaluated on the basis of cell death and progression of tumour xenografts. Platinum compound-induced DNA damage was evaluated by immunofluorescence analysis of histone gamma-H2AX.. Immunofluorescence analysis of histone gamma-H2AX showed that YM155 delayed the repair of double-strand breaks induced in nuclear DNA by platinum compounds. The combination of YM155 and platinum compounds also induced synergistic increases both in the number of apoptotic cells and in the activity of caspase-3. Finally, combination therapy with YM155 and platinum compounds delayed the growth of NSCLC tumour xenografts in nude mice to an extent greater than that apparent with either treatment modality alone.. These results suggest that YM155 sensitises tumour cells to platinum compounds both in vitro and in vivo, and that this effect is likely attributable to the inhibition of DNA repair and consequent enhancement of apoptosis.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carboplatin; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; DNA Damage; Histones; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Male; Mice; Mice, Inbred BALB C; Microtubule-Associated Proteins; Naphthoquinones; Phosphorylation; Survivin

2010
Furano-1,2-naphthoquinone inhibits EGFR signaling associated with G2/M cell cycle arrest and apoptosis in A549 cells.
    Cell biochemistry and function, 2010, Dec-02, Volume: 28, Issue:8

    Furano-1,2-naphthoquinone (FNQ), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. FNQ exerted anti-proliferative activity with the G(2)/M cell cycle arrest and apoptosis in A549 cells. FNQ-induced G(2)/M arrest was correlated with a marked decrease in the expression levels of cyclin A and cyclin B, and their activating partner cyclin-dependent kinases (Cdk) 1 and 2 with concomitant induction of p53, p21, and p27. FNQ-induced apoptosis was accompanied with Bax up-regulation and the down-regulation of Bcl-2, X-linked inhibitor of apoptosis (XIAP), and survivin, resulting in cytochrome c release and sequential activation of caspase-9 and caspase-3. Western blot analysis revealed that FNQ suppressed EGFR phosphorylation and JAK2, STAT3, and STAT5 activation, but increased in activation of p38 MAPK and c-Jun NH2-terminal kinase (JNK) stress signal. The combined treatment of FNQ with AG1478 (a specific EGFR inhibitor) significantly enhanced the G(2)/M arrest and apoptosis, and also led to up-regulation in Bax, p53, p21, p27, release of mitochondrial cytochrome c, and down-regulation of Bcl-2, XIAP, survivin, cyclin A, cyclin B, Cdk1, and Cdk2 in A549 cells. These findings suggest that FNQ-mediated cytotoxicity of A549 cell related with the G(2)/M cell cycle arrest and apoptosis via inactivation of EGFR-mediated signaling pathway.

    Topics: Apoptosis; Cell Division; Cell Proliferation; Enzyme Activation; ErbB Receptors; Furans; G2 Phase; Humans; Inhibitor of Apoptosis Proteins; Janus Kinase 2; Lung Neoplasms; Mitochondria; Mitogen-Activated Protein Kinases; Naphthoquinones; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; STAT3 Transcription Factor; STAT5 Transcription Factor; Tumor Cells, Cultured

2010
Natural tanshinone-like heterocyclic-fused ortho-quinones from regioselective Diels-Alder reaction: synthesis and cytotoxicity evaluation.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:10

    A series of new natural tanshinone-like oxoheterocyclic-fused ortho-quinone derivatives were synthesized from readily available benzofuranol and N-substituted dienes via IBX oxidation-cycloaddition-aromatization procedure. The regiospecific Diels-Alder cycloaddition reactions of N-dienes were achieved efficiently with a variety of dienophiles. It is found that the amide moiety in the molecular could be preserved or eliminated by control of the aromatization conditions. Selected oxoheterocyclic-fused ortho-quinones as well as several thioheterocyclic-fused ortho-quinones we obtained before were evaluated for their cytotoxicities on different cancer cell lines and the Structure-Activity Relationship (SAR) was discussed.

    Topics: Adenocarcinoma; Antineoplastic Agents; Carcinoma; Cell Line, Tumor; Cell Proliferation; Furans; Humans; Lung Neoplasms; Models, Molecular; Molecular Structure; Naphthoquinones; Nasopharyngeal Neoplasms; Stereoisomerism; Structure-Activity Relationship

2009
Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization.
    Journal of controlled release : official journal of the Controlled Release Society, 2009, Nov-03, Volume: 139, Issue:3

    Effective delivery of radiosensitizer to target tumor cells, causing preferentially increased tumor cytotoxicity, while simultaneously minimizing damage to healthy cells around the tumor, is an ideal strategy for the improvement of radiotherapeutic efficacy against human cancer. We aimed to enhance radiotherapeutic efficacy by using biocompatible gold nanoparticles (AuNP) as a vehicle for systemic delivery of ss-lapachone (lap). Lap is a novel anticancer agent displaying potent cytotoxicity against cancer cells expressing NAD(P)H:quinone oxidoreductase-1 enzyme (NQO1). Although lap is expected to be a very promising radiosensitizer, its poor solubility and non-specific distribution obstruct preclinical evaluation and clinical application. In this study, the property of AuNPs carrying lap (AuNPs/lap) for active-targeting tumor cells and improving in vivo radiotherapeutic efficacy was evaluated. Murine monoclonal anti-EGFR antibody was conjugated to the AuNPs/lap as a ligand for active targeting. The active tumor-targeting property of AuNPs/lap conjugating anti-EGFR antibody was validated in vitro experiments using cell lines expressing EGFR at different levels. In mice bearing xenograft human tumors, the intravenous injection of AuNPs/lap exhibited highly enhanced radiotherapeutic efficacy. AuNPs/lap offers a new modality for improvement of radiotherapeutic efficacy and feasibility of further clinical application for human cancer treatment.

    Topics: Animals; Antibodies, Monoclonal; Biological Transport; Cell Line, Tumor; Cell Survival; Chemistry, Pharmaceutical; Drug Carriers; Drug Compounding; Drug Evaluation, Preclinical; ErbB Receptors; Gold; Humans; Injections, Intravenous; Lung Neoplasms; Metal Nanoparticles; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Radiation-Sensitizing Agents; Reproducibility of Results; Time Factors; Xenograft Model Antitumor Assays

2009
High levels of thioredoxin reductase 1 modulate drug-specific cytotoxic efficacy.
    Free radical biology & medicine, 2009, Dec-01, Volume: 47, Issue:11

    The selenoprotein thioredoxin reductase 1 (TrxR1) is currently recognized as a plausible anticancer drug target. Here we analyzed the effects of TrxR1 targeting in the human A549 lung carcinoma cell line, having a very high basal TrxR1 expression. We determined the total cellular TrxR activity to be 271.4 +/- 39.5 nmol min(-1) per milligram of total protein, which by far exceeded the total thioredoxin activity (39.2 +/- 3.5 nmol min(-1) per milligram of total protein). Knocking down TrxR1 by approx 90% using siRNA gave only a slight effect on cell growth, irrespective of concurrent glutathione depletion (> or = 98% decrease), and no increase in cell death or distorted cell cycle phase distributions. This apparent lack of phenotype could probably be explained by Trx functions being maintained by the remaining TrxR1 activity. TrxR1 knockdown nonetheless yielded drug-specific modulation of cytotoxic efficacy in response to various chemotherapeutic agents. No changes in response upon exposure to auranofin or juglone were seen after TrxR1 knockdown, whereas sensitivity to 1-chloro-2,4-dinitrobenzene or menadione became markedly increased. In contrast, a virtually complete resistance to cisplatin using concentrations up to 20 microM appeared upon TrxR1 knockdown. The results suggest that high overexpression of TrxR has an impact not necessarily linked to Trx function that nonetheless modulates drug-specific cytotoxic responses.

    Topics: Adenocarcinoma; Apoptosis; Auranofin; Cell Cycle; Cell Growth Processes; Cell Line, Tumor; Cisplatin; Dinitrochlorobenzene; Drug Resistance, Neoplasm; Humans; Lung Neoplasms; Naphthoquinones; RNA, Small Interfering; Thioredoxin Reductase 1; Vitamin K 3

2009
Radiosensitizing effect of YM155, a novel small-molecule survivin suppressant, in non-small cell lung cancer cell lines.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2008, Oct-15, Volume: 14, Issue:20

    Survivin, a member of the inhibitor of apoptosis protein family, is an attractive target for cancer therapy. We have now investigated the effect of YM155, a small-molecule inhibitor of survivin expression, on the sensitivity of human non-small cell lung cancer (NSCLC) cell lines to gamma-radiation.. The radiosensitizing effect of YM155 was evaluated on the basis of cell death, clonogenic survival, and progression of tumor xenografts. Radiation-induced DNA damage was evaluated on the basis of histone H2AX phosphorylation and foci formation.. YM155 induced down-regulation of survivin expression in NSCLC cells in a concentration- and time-dependent manner. A clonogenic survival assay revealed that YM155 increased the sensitivity of NSCLC cells to gamma-radiation in vitro. The combination of YM155 and gamma-radiation induced synergistic increases both in the number of apoptotic cells and in the activity of caspase-3. Immunofluorescence analysis of histone gamma-H2AX also showed that YM155 delayed the repair of radiation-induced double-strand breaks in nuclear DNA. Finally, combination therapy with YM155 and gamma-radiation delayed the growth of NSCLC tumor xenografts in nude mice to a greater extent than did either treatment modality alone.. These results suggest that YM155 sensitizes NSCLC cells to radiation both in vitro and in vivo, and that this effect of YM155 is likely attributable, at least in part, to the inhibition of DNA repair and enhancement of apoptosis that result from the down-regulation of survivin expression. Combined treatment with YM155 and radiation warrants investigation in clinical trials as a potential anticancer strategy.

    Topics: Animals; Apoptosis; Carcinoma, Non-Small-Cell Lung; Caspase 3; Combined Modality Therapy; DNA Repair; Female; Fluorescent Antibody Technique; Gamma Rays; Histones; Humans; Imidazoles; Immunoblotting; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Mice; Mice, Inbred BALB C; Mice, Nude; Microtubule-Associated Proteins; Naphthoquinones; Neoplasm Proteins; Radiation Tolerance; Radiation-Sensitizing Agents; Survival Rate; Survivin; Tumor Cells, Cultured; Tumor Stem Cell Assay; Xenograft Model Antitumor Assays

2008
The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine.
    Molecular pharmacology, 2008, Volume: 73, Issue:3

    Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two events and in particular whether TRF2 is involved in this process. In this study, we found that SAL concurrently induced DNA double-strand breaks, telomeric DNA damage, and telomere erosion in lung carcinoma A549 cells. It was unexpected to find that SAL led to disruption of TRF2, independently of either its transcription or proteasome-mediated degradation. By overexpressing the full-length trf2 gene and transfecting TRF2 small interfering RNAs, we showed that TRF2 protein protected both telomeric and genomic DNA from the SAL-elicited events. It is noteworthy that although both the Ataxia-telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) kinases responded to the SAL-induced DNA damages, only ATR was essential for the telomere erosion. The study also showed that the activated ATR augmented the SAL-triggered TRF2 disruption, whereas TRF2 reduction in turn enhanced ATR function. All of these findings suggest the emerging significance of TRF2 protecting both telomeric DNA and genomic DNA on the one hand and reveal the mutual modulation between ATR and TRF2 in sensing DNA damage signaling during cancer development on the other hand.

    Topics: Ataxia Telangiectasia Mutated Proteins; Carcinoma; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Comet Assay; DNA Breaks, Double-Stranded; DNA-Binding Proteins; Humans; Lung Neoplasms; Naphthoquinones; Nuclear Proteins; Protein Serine-Threonine Kinases; RNA, Small Interfering; Statistics as Topic; Telomere; Telomeric Repeat Binding Protein 2; Transfection; Tumor Suppressor Proteins

2008
A tyrosine kinase inhibitor, beta-hydroxyisovalerylshikonin, induced apoptosis in human lung cancer DMS114 cells through reduction of dUTP nucleotidohydrolase activity.
    Biochimica et biophysica acta, 2008, Volume: 1782, Issue:1

    Apoptotic cell death was induced in human lung cancer DMS114 cells by treatment with beta-hydroxyisovalerylshikonin (beta-HIVS), an ATP-noncompetitive inhibitor of protein tyrosine kinases. Changes in phosphoprotein profiles were analyzed by two-dimensional-polyacrylamide gel electrophoresis (2D-PAGE) after the cells were treated with beta-HIVS. One spot on the 2D gel showed a marked decrease in intensity and the corresponding protein was identified by mass spectrometry as dUTP nucleotidohydrolase (dUTPase). The beta-HIVS-induced decrease of dUTPase in the phosphoprotein fraction of DMS114 cells was confirmed using immunoblotting. Treatment of the cells with beta-HIVS-induced rapid reduction of dUTPase activity. An antioxidant N-acetyl-cysteine inhibited both the reduction of phosphorylated dUTPase and the induction of apoptosis by beta-HIVS treatment of DMS114 cells. Introduction of siRNA directed against dUTPase mRNA into DMS114 cells enhanced the susceptibility of beta-HIVS-induced apoptosis. Treatment of DMS114 cells with beta-HIVS and 5-fluorouracil, a specific inhibitor of thymidylate synthase used as a chemotherapeutic drug, revealed the synergistic effects of these drugs on the inhibition of cell growth. These results suggest that dUTPase activity is one of the crucial factors involved in apoptotic cell death in lung cancer cells.

    Topics: Amino Acid Sequence; Antineoplastic Agents; Antioxidants; Apoptosis; Cell Line, Tumor; Cell Proliferation; Deoxyuracil Nucleotides; Enzyme Activation; Fluorouracil; Humans; Lung Neoplasms; Molecular Sequence Data; Naphthoquinones; Phosphoproteins; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrophosphatases; RNA, Small Interfering

2008
Anti-cancer effect of bio-reductive drug beta-lapachon is enhanced by activating NQO1 with heat shock.
    International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 2008, Volume: 24, Issue:2

    Bio-reduction/activation of anti-cancer drug beta-lapachone (beta-lap) is mediated by NAD(P)H: Quinone oxidoreductase (NQO1). We investigated the feasibility of using mild temperature hyperthermia to increase the anti-cancer effect of beta-lap by up-regulating NQO1 expression.. NQO1 expression in FSaII fibrosarcoma of C3H mice and A549 human lung cancer cells was evaluated with Western blot analysis and immunostaining of cells at different times after water-bath heating. Clonogenic cell survival method was used to determine the sensitivity of cells to heating, beta-lap, and in combination. The growth of FSaII tumors in the right hind legs of C3H mice was studied after heating the tumors at 42 degrees C for 1 h with water bath, an i.p. injection of beta-lap to host mice or an i.p. injection of beta-lap 24 h after heating the tumors.. Heating at 42 degrees C for 1 h significantly increased the expression of NQO1 in the cancer cells with a maximum increase occurring 8-24 h after heating. The sensitivity of cancer cells to beta-lap treatment progressively increased until 24 h after heating most likely due to the increase in NQO1 expression. Heating the FSaII tumors at 42 degrees C for 1 h and treating the host mice with an i.p. injection of 50 mg/kg beta-lap 24 h after the tumor heating was far more effective than heating alone or beta-lap treatment alone to suppress the tumor growth.. Mild temperature heat shock elevates the NQO1 expression in cancer cells, which in turn markedly increases the sensitivity of the cells to the bioreductive drug beta-lap in vitro and in vivo.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Combined Modality Therapy; Fibrosarcoma; Humans; Hyperthermia, Induced; Lung Neoplasms; Mice; NAD(P)H Dehydrogenase (Quinone); NADPH Dehydrogenase; Naphthoquinones; Neoadjuvant Therapy; Temperature

2008
Kinase activity, heat shock protein 27 phosphorylation, and lung epithelial cell glutathione.
    Experimental lung research, 2008, Volume: 34, Issue:5

    The 27-kDa heat shock protein (Hps27) is phosphorylated in a way that appears to regulate antioxidant defenses by mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), a component of the p38(MAPK) pathway. To investigate the role of Hsp27 in cellular resistance to oxidant stress, lung cells (A549) were incubated with MAPK inhibitors to investigate the pathway's role in antioxidant defense. Cells were harvested for measurement of reduced gluthathione and glutathione disulfide (GSH and GSSH); or, exposed to 2,3-dimethoxy-1,4-napthoquinone (DMNQ). Inhibition of MAPK with SB203580 decreased total cellular glutathione (mean +/- SE): Vehicle, 150 +/- 20 mu M; SB203580, 57 +/- 10* (*P < .01). Inhibition of MAPK tripled [GSSG]/[GSH]: Vehicle, 0.29 +/- 0.09; SB203580, 1.06 +/- 0.43* (*P > .05; n = 6 per group). Hsp27 protein content did not change significantly after MAPK inhibition: Vehicle 2.20 +/- 0.24 ng/mg protein; SB203580, 2.03 +/- 0.34 (P > .05). Transfection of epithelial cells with wild-type (pcDNA-HA-Hsp27) or phosphomimic (pcDNA-HA-Hsp27-S3D) vector increased Hsp27 protein, which significantly protected cells from oxidant stress. Inhibition of the MAPK system, including p38(MAPK), results in cellular oxidant stress. Hsp27, which is phosphorylated by MK2 in the MAPK pathway, protects epithelial cells from oxidant stress.

    Topics: Adenocarcinoma, Papillary; Cell Line, Tumor; Enzyme Inhibitors; Epithelial Cells; Glutathione; Glutathione Disulfide; Humans; Imidazoles; Intracellular Signaling Peptides and Proteins; Lung Neoplasms; Naphthoquinones; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protein Serine-Threonine Kinases; Pyridines; Respiratory Mucosa; Transfection

2008
Antitumor activity of a novel bis-aziridinylnaphthoquinone (AZ4) mediating cell cycle arrest and apoptosis in non-small cell lung cancer cell line NCI-H460.
    Acta pharmacologica Sinica, 2007, Volume: 28, Issue:4

    The cytotoxic activities of a series of bis-aziridinylnaphthoquinone, AZ1 to AZ4, on human lung carcinoma cell lines, H460, and normal lung cells fibroblast cell line, MRC-5, and the mechanisms of H460 cells induced by AZ4 were investigated.. The MTT assay was used to determine the cell proliferation. Cell cycle was analysed by FACS. The activity of caspase 3, 8 and 9 was determined by cell-permeable fluorogenic detection system. Western blot assay was used to evaluate the regulation of cyclin B, Cdc-2, p53, p21, and the Bcl-2 protein.. AZ1 to AZ4 displayed various cytotoxicity activities against H460 and MRC-5 cells. Compared to those compounds, AZ4 was with the most effective agent among the 5 tested analogues at reducing H460 cell viability with an IC(50) value of 1.23 micromol/L; it also exhibited weak cytotoxicity against MRC-5 cells with an IC(50) value of 12.7 micromol/L. The results show that growth arrest on the G2-M phase of H460 cells induced by AZ4 for 24 h was discovered, and this might be altered with the reduced Cdc-2 protein expression of 47% at 2.0 micromol/L AZ4, but not with cyclin B protein expression. The AZ4 treated cells were then led to apoptosis after 48 h. This was associated with the activation of apoptotic enzyme caspase 3 and mediated by caspase 8, but not caspase 9 at various concentrations of AZ4 after being cultured for 48 h and 30 h, respectively. The anti-apoptotic protein (Bcl-2) expression in H460 cells altered by 39% with downregulation, and the p53 protein by 25% with upregulation after being cultured with 2.0 micromol/L AZ4 for 48 h. In a time-dependent manner, the expression of the p53 and p21 proteins were increased to the maximum at 24 h, and then decreased at 48.. AZ4 represents a novel antitumor aziridinylnaphthoquinone with therapeutic potential against the non-small cell lung cancer cells.

    Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Caspases; Cell Cycle; Cell Line, Tumor; G2 Phase; Humans; Lung Neoplasms; Naphthoquinones; Proto-Oncogene Proteins c-bcl-2; Tumor Suppressor Protein p53

2007
DMNQ S-64 induces apoptosis via caspase activation and cyclooxygenase-2 inhibition in human nonsmall lung cancer cells.
    Annals of the New York Academy of Sciences, 2007, Volume: 1095

    Shikonin has been reported to induce apoptosis and inhibit angiogenesis in vivo and in vitro. 6-(1-propoxyiminoalkyl)-5,8-dimethoxyoxy 1,4-naphtoquinone S-64 (DMNQ S-64) was synthesized as a shikonin derivative. In this article, the underlying apoptotic mechanism of DMNQ S-64 was examined. DMNQ S-64 exerted cytotoxicity against A549 lung carcinoma cells with IC(50) of 27.3 microM. Apoptotic bodies were observed in DMNQ S-64-treated A549 cells by 4'-6-diamidino-2-phenylindole (DAPI) staining assay. DMNQ S-64 also increased sub-G1 DNA portion in a concentration-dependent manner by flow cytometric analysis. Western blotting has revealed that DMNQ S-64 effectively activates the expression of caspase 8, 9, and 3, cleaves poly (ADP-ribose) polymerase, and increases the ratio of Bax/Bcl-2. Furthermore, cytochrome c was released in a concentration-dependent manner by DMNQ S-64. Similarly, DMNQ S-64 significantly increased caspase 3 activity by enzyme-linked immunosorbent assay (ELISA). It also significantly inhibited the level of prostaglandin E2 (PGE(2)) by ELISA and downregulated the expression of cyclooxygenase-2 (COX-2) in a concentration-dependent manner. Taken together, DMNQ S-64 may exhibit cytotoxicity against A549 cells via caspase activation and COX-2 inhibition.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Non-Small-Cell Lung; Caspases; Cell Line, Tumor; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Enzyme Activation; Humans; Hydroxylamines; Lung Neoplasms; Membrane Proteins; Naphthoquinones

2007
An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone.
    Proceedings of the National Academy of Sciences of the United States of America, 2007, Jul-10, Volume: 104, Issue:28

    Lung cancer is the number one cause of cancer-related deaths in the world. Patients treated with current chemotherapies for non-small-cell lung cancers (NSCLCs) have a survival rate of approximately 15% after 5 years. Novel approaches are needed to treat this disease. We show elevated NAD(P)H:quinone oxidoreductase-1 (NQO1) levels in tumors from NSCLC patients. beta-Lapachone, an effective chemotherapeutic and radiosensitizing agent, selectively killed NSCLC cells that expressed high levels of NQO1. Isogenic H596 NSCLC cells that lacked or expressed NQO1 along with A549 NSCLC cells treated with or without dicoumarol, were used to elucidate the mechanism of action and optimal therapeutic window of beta-lapachone. NSCLC cells were killed in an NQO1-dependent manner by beta-lapachone (LD50, approximately 4 microM) with a minimum 2-h exposure. Kinetically, beta-lapachone-induced cell death was characterized by the following: (i) dramatic reactive oxygen species (ROS) formation, eliciting extensive DNA damage; (ii) hyperactivation of poly(ADP-ribose)polymerase-1 (PARP-1); (iii) depletion of NAD+/ATP levels; and (iv) proteolytic cleavage of p53/PARP-1, indicating mu-calpain activation and apoptosis. Beta-lapachone-induced PARP-1 hyperactivation, nucleotide depletion, and apoptosis were blocked by 3-aminobenzamide, a PARP-1 inhibitor, and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a Ca2+ chelator. NQO1- cells (H596, IMR-90) or dicoumarol-exposed NQO1+ A549 cells were resistant (LD50, >40 microM) to ROS formation and all cytotoxic effects of beta-lapachone. Our data indicate that the most efficacious strategy using beta-lapachone in chemotherapy was to deliver the drug in short pulses, greatly reducing cytotoxicity to NQO1- "normal" cells. beta-Lapachone killed cells in a tumorselective manner and is indicated for use against NQO1+ NSCLC cancers.

    Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line; Cell Line, Tumor; Humans; Lung Neoplasms; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Signal Transduction; Tumor Cells, Cultured

2007
Growth inhibition of A549 human lung carcinoma cells by beta-lapachone through induction of apoptosis and inhibition of telomerase activity.
    International journal of oncology, 2005, Volume: 26, Issue:4

    The objective of the present study was to investigate the effect of beta-lapachone, a quinone obtained from the bark of the lapacho tree (Tabebuia avellanedae), on the cell growth and apoptosis in human lung carcinoma cell line A549. Exposure of A549 cells to beta-lapachone resulted in growth inhibition and induction of apoptosis in a time- and dose-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometry analysis. This increase in apoptosis was associated with a decrease in Bcl-2 and expression, an increase of Bax, and an activation of caspase-3 and caspase-9. beta-lapachone treatment markedly inhibited the activity of telomerase in a dose-dependent fashion. Additionally, the levels of human telomerase RNA (hTR) and c-myc expression were progressively down-regulated by beta-lapachone treatment. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of beta-lapachone.

    Topics: Apoptosis; Carcinoma; Cell Proliferation; Dose-Response Relationship, Drug; Flow Cytometry; Humans; Lung Neoplasms; Naphthoquinones; Plant Extracts; Reverse Transcriptase Inhibitors; Tabebuia; Telomerase; Tumor Cells, Cultured

2005
Antimetastatic effect of salvicine on human breast cancer MDA-MB-435 orthotopic xenograft is closely related to Rho-dependent pathway.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2005, May-01, Volume: 11, Issue:9

    Salvicine is a novel DNA topoisomerase II inhibitor with potent anticancer activity. In present study, the effect of salvicine against metastasis is evaluated using human breast carcinoma orthotopic metastasis model and its mechanism is further investigated both in animal and cellular levels.. The MDA-MB-435 orthotopic xenograft model was applied to detect the antimetastatic effect of salvicine. Potential target candidates were detected and analyzed by microarray technology. Candidates were verified and explored by reverse transcription-PCR and Western blot. Salvicine activities on stress fiber formation, invasion, and membrane translocation were further investigated by immunofluorescence, invasion, and ultracentrifugal assays.. Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft, without affecting primary tumor growth obviously. A comparison of gene expression profiles of primary tumors and lung metastatic focus between salvicine-treated and untreated groups using the CLOTECH Atlas human Cancer 1.2 cDNA microarray revealed that genes involved in tumor metastasis, particularly those closely related to cell adhesion and motility, were obviously down-regulated, including fibronectin, integrin alpha3, integrin beta3, integrin beta5, FAK, paxillin, and RhoC. Furthermore, salvicine significantly down-regulated RhoC at both mRNA and protein levels, greatly inhibited stress fiber formation and invasiveness of MDA-MB-435 cells, and markedly blocked translocation of both RhoA and RhoC from cytosol to membrane.. The unique antimetastatic action of salvicine, particularly its specific modulation of cell motility in vivo and in vitro, is closely related to Rho-dependent signaling pathway.

    Topics: Animals; Blotting, Western; Breast Neoplasms; Cell Line, Tumor; Cell Membrane; Cytosol; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Lysophospholipids; Mammary Neoplasms, Experimental; Mice; Mice, Nude; Naphthoquinones; Protein Transport; ras Proteins; Reverse Transcriptase Polymerase Chain Reaction; rho GTP-Binding Proteins; rhoA GTP-Binding Protein; rhoC GTP-Binding Protein; RNA, Messenger; Signal Transduction; Stress Fibers; Xenograft Model Antitumor Assays

2005
Beta-hydroxyisovalerylshikonin and cisplatin act synergistically to inhibit growth and to induce apoptosis of human lung cancer DMS114 cells via a tyrosine kinase-dependent pathway.
    Oncology, 2004, Volume: 66, Issue:1

    beta-Hydroxyisovalerylshikonin (beta-HIVS) and cisplatin (CDDP) had a synergistic growth-inhibitory effect on cultured human small-cell lung carcinoma DMS114 cells, as well as on human leukemia U937 and epidermoid carcinoma A431 cells, while beta-HIVS and CDDP alone at the same respective concentrations had little effect. Growth inhibition was accompanied by induction of apoptosis, as determined by an ELISA for the detection of cell death and the TUNEL assay. Using phosphotyrosine-specific antibodies (PY20), we observed that tyrosine kinase activity in DMS114 cells was inhibited by treatment with beta-HIVS and CDDP together. The tyrosine kinase activity of isolated Src and that of isolated receptors for epidermal growth factor were also inhibited by the two agents together. The synergistic effects of the growth of DMS114 cells of beta-HIVS and CDDP were not due simply to the intracellular accumulation of CDDP or to levels of DNA adducts. Our data suggest that the synergistic effect on the growth of DMS114 cells of beta-HIVS and CDDP might be a result of the inhibition of a tyrosine kinase-dependent pathway.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Cisplatin; Drug Synergism; Humans; In Situ Nick-End Labeling; Lung Neoplasms; Naphthoquinones; Protein-Tyrosine Kinases; Tumor Cells, Cultured

2004
Amplified telomerase analysis by using rotating magnetic particles: the rapid and sensitive detection of cancer cells.
    Chembiochem : a European journal of chemical biology, 2004, Jul-05, Volume: 5, Issue:7

    A highly sensitive telomerase detection method that involves amplified telomerase analysis and the use of rotating magnetic particles has been developed. Magnetic particles, functionalized with a primer (1) that is recognized by telomerase, are mixed with a nucleotide mixture that includes biotinylated-dUTP, and telomerase-induced elongation of the primers proceeds with simultaneous biotin incorporation. Avidin-Horseradish peroxidase conjugate, coupled to biotin labels, yields the biocatalytic functional particles. Mixing the resulting particles with naphthoquinone-modified magnetic particles enables the optoelectronic detection of telomerase. Attraction of the magnetic particles to an electrode, followed by rotation of the particles, causes the electrocatalytic reduction of O(2) to H(2)O(2) and HRP-catalyzed oxidation of luminol (3); this results in chemilumunescence. The intensity of the emitted light depends on the telomerase content of the sample and the rotation speed of the particles. A minimum number of 10 cancer cells could be detected.

    Topics: Adenocarcinoma; Biosensing Techniques; Biotinylation; Carcinoma, Squamous Cell; Cells, Cultured; DNA; HeLa Cells; Horseradish Peroxidase; Humans; Hydrogen Peroxide; Kidney; Luminescent Measurements; Luminol; Lung Neoplasms; Magnetics; Naphthoquinones; Sensitivity and Specificity; Telomerase

2004
Telomerase inhibition is a specific early event in salvicine-treated human lung adenocarcinoma A549 cells.
    Biochemical and biophysical research communications, 2004, Oct-15, Volume: 323, Issue:2

    The telomere and telomerase have been suggested as targets for anticancer drug discovery. However, the mechanisms by which conventional anticancer drugs affect these targets are currently unclear. The novel topoisomerase II inhibitor, salvicine, suppresses telomerase activity in leukemia HL-60 cells. To further determine whether this activity of salvicine is specific to the hematological tumor and distinct from those of other conventional anticancer agents, we studied its effects on telomere and telomerase in a solid lung carcinoma cell line, A549. Differences in telomerase inhibition and telomere erosion were observed between salvcine and other anticancer agents. All anticancer agents (except adriamycin) induced shortening of the telomere, which was identified independent of replication, but only salvicine inhibited telomerase activity in A549 cells under conditions of high concentration and short-term exposure. At the low concentration and long-term exposure mode, all the tested anticancer agents shortened the telomere and inhibited telomerase activity in the same cell line. Notably, salvicine inhibited telomerase activity more severely than the other agents examined. Moreover, the compound inhibited telomerase activity in A549 cells indirectly in a concentration- and time-dependent manner. Salvicine did not affect the expression of hTERT, hTP1, and hTR mRNA in A549 cells following 4 h of exposure. Okadaic acid protected telomerase from inhibition by salvicine. These results indicate specificity of salvicine and diversity of anticancer agents in the mechanism of interference with telomerase and the telomere system. Our data should be helpful for designing the study in the development of agents acting on telomere and/or telomerase.

    Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Cell Division; Cell Line, Tumor; Cell Survival; Enzyme Activation; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Naphthoquinones; Telomerase; Telomere; Treatment Outcome

2004
Induction of G2/M cell cycle arrest and apoptosis by a benz[f]indole-4,9-dione analog in cultured human lung (A549) cancer cells.
    Bioorganic & medicinal chemistry letters, 2004, Oct-18, Volume: 14, Issue:20

    A synthetic benz[f]indole-4,9-dione analog, 2-amino-3-ethoxycarbonyl-N-methylbenz[f]indole-4,9-dione (SME-6), showed a potent growth inhibition of a panel of human cancer cell lines. The mechanism of action study revealed that the growth inhibitory effect of SME-6 was highly related to the induction of G2/M cell cycle arrest and apoptosis in human lung cancer cells (A549). These data may provide new information for understanding the mechanisms by benz[f]indole-4,9-diones-mediated antitumor activity.

    Topics: Antineoplastic Agents; Apoptosis; Cell Division; Cell Line, Tumor; Drug Screening Assays, Antitumor; G2 Phase; Humans; Imidazoles; Lung Neoplasms; Microscopy, Electron, Scanning; Microscopy, Fluorescence; Naphthoquinones

2004
Mitochondrial damage prior to apoptosis in furanonaphthoquinone treated lung cancer cells.
    Cancer detection and prevention, 2003, Volume: 27, Issue:1

    The mechanisms of the antitumor reactions of 2-methylnaphtho[2,3-b]furan-4,9-dione (FNQ3) to human lung adenocarcinoma A549 cells were investigated. A549 cells that received 1.25 microg/ml FNQ3 (IC(50) at 0.35 microg/ml) developed intensive mitochondrial H(2)O(2) production at 1 h. Selective structural mitochondrial swelling, alteration of mitochondrial membrane potential, and cytochrome c and caspase-9 release from the mitochondria occurred 18-24 h later. alpha-Tocopherol inhibited the alteration of both mitochondrial permeability and the leakage of procaspase-9. The caspase-9 was then activated in the cytosol. The expression of Bcl-2 oncoprotein was suppressed by FNQ3, and resulted in apoptosis. The higher dose of 5 microg/ml induced necrosis via severe mitochondrial breakage. These results showed that FNQ3 targets the mitochondria of A549 cells to produce a reactive oxygen species resulting in apoptosis and necrosis.

    Topics: Adenocarcinoma; alpha-Tocopherol; Antineoplastic Agents, Phytogenic; Antioxidants; Apoptosis; Blotting, Western; Caspase 9; Caspases; Cytochrome c Group; Cytoplasm; DNA Fragmentation; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Flow Cytometry; Genes, bcl-2; Humans; Hydrogen Peroxide; Lung Neoplasms; Membrane Potentials; Microscopy, Confocal; Microscopy, Electron; Mitochondria; Naphthoquinones; Necrosis; Permeability; Tumor Cells, Cultured

2003
In vitro cytotoxicity activity of Diosquinone, a naphthoquinone epoxide.
    Phytotherapy research : PTR, 2003, Volume: 17, Issue:3

    Diosquinone [1], a naphthoquinone epoxide previously isolated from the root bark of Diospyros mespiliformis (Hostch) and D. tricolor [Ebenaceae] is been assessed for cytotoxicity activity against ten cancer cell lines by standard NIH method. The ethno-pharmacological claim of this plant and the previously observed good antibacterial activity of this compound among the others isolated from this plant suggest its probable cytotoxicity activity. Diosquinone was observed to be very active against most of the cancer cell lines. It shows very good activity against all the cell lines tested with ED50 value ranging between 0.18 microg/ml. against Human Glioblastoma (U373) to 4.5 microg/ml. against Hormone dependent human prostrate cancer( LNCaP).

    Topics: Antineoplastic Agents; Breast Neoplasms; Colonic Neoplasms; Diospyros; Drug Resistance, Multiple; Female; Fibrosarcoma; Humans; Lung Neoplasms; Male; Naphthoquinones; Nasopharyngeal Neoplasms; Neoplasms, Hormone-Dependent; Phytotherapy; Plant Extracts; Prostatic Neoplasms; Tumor Cells, Cultured

2003
A549 subclones demonstrate heterogeneity in toxicological sensitivity and antioxidant profile.
    American journal of physiology. Lung cellular and molecular physiology, 2002, Volume: 283, Issue:4

    In A549 cell culture, significant variability was found in sensitivity to actinomycin D. Using limiting dilution, actinomycin D-susceptible (G4S) and -resistant (D3R) subclones were isolated. G4S cells were also susceptible to protein synthesis inhibitors, a redox cycling quinone, and an electrophile with concomitant activation of caspases 3 and 9. D3R cells were resistant to these agents without caspase activation. Antioxidant profiles revealed that D3R cells had significantly higher glutathione and glutathione reductase activity but markedly lower catalase, glutathione peroxidase, and aldehyde reductase activities than G4S cells. Thus A549 cells contain at least two distinct subpopulations with respect to predisposition to cell death and antioxidant profile. Because sensitivities to agents and the antioxidant profile were inconsistent, mechanisms independent of antioxidants, including the apparent inability to activate caspases in D3R cells, may play an important role. Regardless, the results suggest that antioxidant profiles of asymmetrical cell populations cannot predict sensitivity to oxidants and warn that the use of single subclones is advisable for mechanistic studies using A549 or other unstable cell lines.

    Topics: Adenocarcinoma; Aldehydes; Anisomycin; Antioxidants; Apoptosis; Caspases; Cytotoxins; Dactinomycin; Genetic Heterogeneity; Glutathione; Growth Inhibitors; Humans; Hydrogen Peroxide; Lung Neoplasms; Male; Naphthoquinones; Oxidation-Reduction; Oxidative Stress; Protein Synthesis Inhibitors; Superoxide Dismutase; Tumor Cells, Cultured

2002
[Clinical trial on the effects of shikonin mixture on later stage lung cancer].
    Zhong xi yi jie he za zhi = Chinese journal of modern developments in traditional medicine, 1991, Volume: 11, Issue:10

    The shikonin mixture was used for 19 cases of later-stage lung cancer who were not the candidates for operation, radiotherapy and chemotherapy. The clinical observation showed that shikonin mixture could inhibit the growth of lung cancer and improve the immune function of the body. The tumors were reduced over 25% in diameter. The effective rate was 63.3%, remission rate 36.9%, survival rate of one year 47.3%. The intermedium survival period was about 10 months, including adenocarcinoma 10 months, squamous carcinoma 12 months. After treatment the life quality of patients were greatly improved. The patients got better appetite and their body weights were increased. They could manage themselves in daily life. The Karnofsky scores were enhanced by 20. The authors also observed that shikonin mixture could relieve such symptoms as cough, bloody sputum and chest pain caused by lung cancer. The levels of cells and interleukin-2 were increased (P less than 0.001). It had no harmful effects on peripheral blood picture, heart, kidney and liver. Shikonin mixture is safe and effective for later-stage cancer.

    Topics: Adenocarcinoma; Adult; Antineoplastic Agents, Phytogenic; Carcinoma, Bronchogenic; Carcinoma, Squamous Cell; Female; Ginsenosides; Humans; Interleukin-2; Killer Cells, Natural; Lung Neoplasms; Male; Middle Aged; Naphthoquinones; Saponins

1991
Chronic toxicity and carcinogenicity in mice of the purified mycotoxins, luteoskyrin and cyclochlorotine.
    Food and cosmetics toxicology, 1972, Volume: 10, Issue:2

    Topics: Animals; Body Weight; Carcinogens; Carcinoma, Hepatocellular; Chemical and Drug Induced Liver Injury; Chlorine; Diet; Dose-Response Relationship, Drug; Female; Lethal Dose 50; Liver; Liver Cirrhosis; Liver Neoplasms; Lung Neoplasms; Male; Mice; Mice, Inbred Strains; Mycotoxins; Naphthoquinones; Necrosis; Oryza; Penicillium; Peptides, Cyclic; Sex Factors

1972
[Use of naphthidon as a radiosensitizer in radiotherapy of patients with malignant neoplasms].
    Meditsinskaia radiologiia, 1971, Volume: 16, Issue:12

    Topics: Adult; Esophageal Neoplasms; Female; Humans; Lung Neoplasms; Male; Middle Aged; Naphthoquinones; Peritoneal Neoplasms; Radiation-Sensitizing Agents; Radiotherapy Dosage; Rectal Neoplasms; Urinary Bladder Neoplasms

1971