naphthoquinones and Leukemia--Myeloid

naphthoquinones has been researched along with Leukemia--Myeloid* in 8 studies

Trials

1 trial(s) available for naphthoquinones and Leukemia--Myeloid

ArticleYear
Early clinical studies with lapachol (NSC-11905).
    Cancer chemotherapy reports. Part 2, 1974, Volume: 4, Issue:4

    Topics: Antineoplastic Agents; Clinical Trials as Topic; Drug Evaluation; Humans; Leukemia, Myeloid; Naphthoquinones; Neoplasms; Plant Extracts; Time Factors

1974

Other Studies

7 other study(ies) available for naphthoquinones and Leukemia--Myeloid

ArticleYear
Novel pyrrolidine-aminophenyl-1,4-naphthoquinones: structure-related mechanisms of leukemia cell death.
    Molecular and cellular biochemistry, 2023, Volume: 478, Issue:2

    Novel derivatives of aminophenyl-1,4-naphthoquinones, in which a pyrrolidine group was added to the naphthoquinone ring, were synthesized and investigated for the mechanisms of leukemic cell killing. The novel compounds, TW-85 and TW-96, differ in the functional (methyl or hydroxyl) group at the para-position of the aminophenyl moiety. TW-85 and TW-96 were found to induce concentration- and time-dependent apoptotic and/or necrotic cell death in human U937 promonocytic leukemia cells but only TW-96 could also kill K562 chronic myeloid leukemia cells and CCRF-CEM lymphoblastic leukemia cells. Normal peripheral blood mononuclear cells were noticeably less responsive to both compounds than leukemia cells. At low micromolar concentrations used, TW-85 killed U937 cells mainly by inducing apoptosis. TW-96 was a weaker apoptotic agent in U937 cells but proved to be cytotoxic and a stronger inducer of necrosis in all three leukemic cell lines tested. Both compounds induced mitochondrial permeability transition pore opening, cytochrome c release, and caspase activation in U937 cells. Cytotoxicity induced by TW-96, but not by TW-85, was associated with the elevation of the cytosolic levels of reactive oxygen species (ROS). The latter was attenuated by diphenyleneiodonium, indicating that NADPH oxidase was likely to be the source of ROS generation. Activation of p38 MAPK by the two agents appeared to prevent necrosis but differentially affected apoptotic cell death in U937 cells. These results further expand our understanding of the structure-activity relationship of aminophenyl-1,4-naphthoquinones as potential anti-leukemic agents with distinct modes of action.

    Topics: Apoptosis; Cell Death; Humans; Leukemia; Leukemia, Myeloid; Leukocytes, Mononuclear; Naphthoquinones; Necrosis; Reactive Oxygen Species; U937 Cells

2023
1,4-Naphthoquinone (CNN1) Induces Apoptosis through DNA Damage and Promotes Upregulation of
    International journal of molecular sciences, 2022, Jul-23, Volume: 23, Issue:15

    The multidrug resistance (MDR) phenotype is one of the major obstacles in the treatment of chronic myeloid leukemia (CML) in advantage stages such as blast crisis. In this scenario, more patients develop resistance mechanisms during the course of the disease, making tyrosine kinase inhibitors (TKIs) target therapies ineffective. Therefore, the aim of the study was to examine the pharmacological role of CNN1, a para-naphthoquinone, in a leukemia multidrug resistant cell line. First, the in vitro cytotoxic activity of Imatinib Mesylate (IM) in K-562 and FEPS cell lines was evaluated. Subsequently, membrane integrity and mitochondrial membrane potential assays were performed to assess the cytotoxic effects of CNN1 in K-562 and FEPS cell lines, followed by cell cycle, alkaline comet assay and annexin V-Alexa Fluor® 488/propidium iodide assays (Annexin/PI) using flow cytometry. RT-qPCR was used to evaluate the H2AFX gene expression. The results demonstrate that CNN1 was able to induce apoptosis, cell membrane rupture and mitochondrial membrane depolarization in leukemia cell lines. In addition, CNN1 also induced genotoxic effects and caused DNA fragmentation, cell cycle arrest at the G2/M phase in leukemia cells. No genotoxicity was observed on peripheral blood mononuclear cells (PBMC). Additionally, CNN1 increased mRNA levels of H2AFX. Therefore, CNN1 presented anticancer properties against leukemia multidrug resistant cell line being a potential anticancer agent for the treatment of resistant CML.

    Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; DNA Damage; Drug Resistance, Neoplasm; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid; Leukocytes, Mononuclear; Naphthoquinones; Up-Regulation

2022
Anti-Leukemic Activity of Shikonin: Role of ERP57 in Shikonin Induced Apoptosis in Acute Myeloid Leukemia.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 39, Issue:2

    ER-Stress and activation of unfolded protein response belong to the major factors involved in chemoresistance in cancer cells. In this study we investigated the effect of shikonin on the survival of acute myeloid leukemia cells and the role of ER-stress protein ERP57, a protein disulfide isomerase, in improvement of chemotherapy.. Using MTT assay we studied cytotoxic effects of shikonin on HL-60 cells. The flow cytometry was adopted to examine the shikonin induced mode of cell death in HL-60 cells. The overall protein expression alteration resulting from shikonin treatment was investigated using proteomics methods. Western blotting was performed to quantify the alteration in protein expression in HL-60 after shikonin treatment. Silencing and overexpression studies were carried out to highlight the therapeutic role of ERP57 in shikonin effect on AML cells.. Shikonin induces apoptosis in HL-60 cells without significant effect on Primary cells from healthy volunteers. The apoptotic effect was dose and time dependent and was accompanied by strong alteration in cell proteome. Among the proteins targeted by shikonin, ERP57 was significantly downregulated in HL-60 after treatment. Compared to healthy control ERP57 was found to be highly expressed in AML cell line HL60 and was downregulated after shikonin treatment. Overexpression of ERP57 protected HL-60 from shikonin induced apoptosis, whereas knockdown of ERP57 expression resulted in increase in shikonin induced apoptosis.. Our results demonstrate that ERP57 plays a crucial role in resistance towards shikonin induced apoptosis in AML cells. Targeting of ERP57 might offer a new therapeutic option for the treatment of acute myeloid leukemia.

    Topics: Acute Disease; Anti-Bacterial Agents; Antineoplastic Agents; Apoptosis; Blotting, Western; Cell Survival; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Electrophoresis, Gel, Two-Dimensional; Endoplasmic Reticulum Stress; Flow Cytometry; HL-60 Cells; Humans; Leukemia, Myeloid; Molecular Structure; Naphthoquinones; Protein Disulfide-Isomerases; Proteome; Proteomics; RNA Interference; Time Factors; Tunicamycin

2016
Synthesis and evaluation of the cytotoxic activity of 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles in myeloid and lymphoid leukemia cell lines.
    European journal of medicinal chemistry, 2014, 09-12, Volume: 84

    Leukemia is the most common blood cancer, and its development starts at diverse points, leading to distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-resistant cases. Naphthoquinones (NQ) are considered privileged structures in medicinal chemistry due to their plethora of biological activities, including antimicrobial and anticancer effects. Nitrogen-containing heterocycles such as 1,2,3-1H-triazoles have been identified as general scaffolds for generating glycosidase inhibitors. In the present study, the NQ and 1,2,3-1H-triazole cores have been combined to chemically synthesize 18 new 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles (1,2-FNQT). Their cytotoxicities were evaluated against four different leukemia cell lines, including MOLT-4 and CEM (lymphoid cell lines) and K562 and KG1 (myeloid cell lines), as well as normal human peripheral blood mononucleated cells (PBMCs). The new 1,2-FNQT series showed high cytotoxic potential against all leukemia cell lines tested, and some compounds (12o and 12p) showed even better results than the classical therapeutic compounds such as doxorubicin or cisplatin. Others compounds, such as 12b, are promising because of their high selectivity against lymphoblastic leukemia and their low activity against normal hematopoietic cells. The cells of lymphoid origin (MOLT and CEM) were generally more sensitive than the myeloid cell lines to this series of compounds, and most of the compounds that showed the highest cytotoxicity were similarly active against both cell lines.

    Topics: Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Furans; Humans; K562 Cells; Leukemia, Lymphoid; Leukemia, Myeloid; Molecular Structure; Naphthoquinones; Structure-Activity Relationship; Triazoles

2014
DMNQ-S17 inhibits constitutive NF-kappaB activation leading to induction of apoptosis through the activation of caspase-3 in human myeloid leukemia U937 cells.
    Life sciences, 2008, Sep-26, Volume: 83, Issue:13-14

    Through cytotoxicity screening with naphthoquinone derivatives, a novel compound 6-(1-oxoallkyl)-5,8-dimethoxy-1,4-naphthoquinone-S17 (DMNQ-S17) showed its potency against human myeloid leukemia U937 cells. Thus, to elucidate the apoptotic mechanism of DMNQ-S17, this study was performed in myeloid leukemia U937 cells by 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) assay, eletrophoretic mobility shift assay (EMSA), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, and Western blotting. In the present study, DMNQ-S17 inhibited constitutive NF kappaB activation and its transcriptional activity in U937 cells. In addition, DMNQ-S17 induced apoptotic features such as apoptotic bodies, cell shrinkage and chromatin condensation in U937 cells. Consistently, flow cytometric analysis showed that DMNQ-S17 increased sub-G1 portion and TUNEL positive cells in a concentration-dependent manner. Furthermore, DMNQ-S17 effectively attenuated mitochondrial membrane potential, released cytochrome C, activated caspase-3 expression, and cleaved poly (ADP-ribose) polymerase (PARP). Reversely, caspase-3 and -9 inhibitors also blocked the DMNQ-S17 induced caspase-3 activation and PARP cleavage in U937 cells. Taken together, these findings suggest that DMNQ-S17 can be a potent anticancer candidate for myeloid leukemias by the suppression of NF-kappaB activation leading to the activation of caspase-3 in human myeloid leukemia U937 cells.

    Topics: Antineoplastic Agents; Apoptosis; Caspase 3; Caspase Inhibitors; Cytochromes c; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Fluorescent Dyes; Humans; In Situ Nick-End Labeling; Indoles; Leukemia, Myeloid; Lymphoma, Large B-Cell, Diffuse; Male; Membrane Potential, Mitochondrial; Naphthoquinones; NF-kappa B; Poly(ADP-ribose) Polymerases; Prostatic Neoplasms; U937 Cells

2008
Beta-hydroxyisovalerylshikonin induces apoptosis in human leukemia cells by inhibiting the activity of a polo-like kinase 1 (PLK1).
    Oncogene, 2003, Feb-20, Volume: 22, Issue:7

    beta-Hydroxyisovalerylshikonin (beta-HIVS), which was isolated from the plant, Lithospermum radix, induces apoptosis in various lines of human tumor cells. To identify genes involved in beta-HIVS-induced apoptotic process, we performed cDNA array analysis and found that beta-HIVS suppresses the expression of the gene for a polo-like kinase 1 (PLK1) that is involved in control of the cell cycle. When U937 and HL60 cells were treated with 10(-6) M beta-HIVS for 0.5 h, both the amount of PLK1 itself and the kinase activity of this enzyme were decreased. By contrast, Bcr-Abl-positive K562 cells were resistant to the induction of apoptosis by beta-HIVS and this compound did not suppress the kinase activity of PLK1 in these cells. However, simultaneous treatment of K562 cells with both beta-HIVS and STI571, which selectively inhibits the protein tyrosine kinase (PTK) activity of Bcr-Abl, strongly induced apoptosis. Moreover, beta-HIVS increased the inhibitory effect of STI571 on PTK activity. Treatment of K562 cells with antisense oligodeoxynucleotides (ODNs) specific for PLK1 sensitized these cells to the beta-HIVS-induced fragmentation of DNA. These results suggest that suppression of the activity of PLK1 via inhibition of tyrosine kinase activity by beta-HIVS might play a critical role in the induction of apoptosis.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Benzamides; Cell Cycle Proteins; Cell Line; Cysteine Proteinase Inhibitors; DNA, Complementary; Enzyme Inhibitors; Fusion Proteins, bcr-abl; Gene Expression Profiling; Gene Expression Regulation, Leukemic; Genistein; HL-60 Cells; Humans; Imatinib Mesylate; K562 Cells; Kidney; Leukemia, Myeloid; Naphthoquinones; Neoplasm Proteins; Oligodeoxyribonucleotides, Antisense; Oligonucleotide Array Sequence Analysis; Phosphorylation; Piperazines; Polo-Like Kinase 1; Protein Kinase Inhibitors; Protein Kinases; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Pyrimidines; U937 Cells

2003
The inherent cellular level of reactive oxygen species: one of the mechanisms determining apoptotic susceptibility of leukemic cells to arsenic trioxide.
    Apoptosis : an international journal on programmed cell death, 2002, Volume: 7, Issue:3

    Though reactive oxygen species (ROS) has been noticed to be involved in arsenic trioxide (As(2)O(3))-induced apoptosis of tumor cells, its role in apoptosis signaling remained to be elucidated. The objective of this work was to explore the association of the inherent cellular ROS level with the susceptibility of the tumor cells to apoptosis induction by As(2)O(3). Low concentration of As(2)O(3) was administered to cultured leukemic cell lines NB4, U937, HL60 and K562. The difference in apoptotic sensitivity was displayed among four cell types. ROS probes were incubated with the cells in the absence of As(2)O(3), and ROS was thus quantified relatively by flow cytometry. We manifested, in four cell types, the inherently existed difference in whole ROS quantity, and a positive correlation between the inherent ROS level and their apoptotic sensitivity to As(2)O(3). Furthermore, by interference using a ROS producer, we demonstrated that an elevation of ROS level would sensitize the cells to As(2)O(3)-induced apoptosis. The results of the present work suggested that the inherent ROS level might be determinative in tumor cells for their apoptotic susceptibility to As(2)O(3).

    Topics: Antineoplastic Agents; Apoptosis; Arsenic Trioxide; Arsenicals; Cell Separation; Dose-Response Relationship, Drug; Flow Cytometry; Humans; In Situ Nick-End Labeling; Leukemia, Myeloid; Naphthoquinones; Oxides; Reactive Oxygen Species; Tumor Cells, Cultured

2002