naphthoquinones has been researched along with Kidney-Diseases* in 6 studies
2 review(s) available for naphthoquinones and Kidney-Diseases
Article | Year |
---|---|
Pyruvate kinase M2: A simple molecule with complex functions.
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease. Topics: Adenosine Triphosphate; Atherosclerosis; Carrier Proteins; Cell Proliferation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Glycolysis; Homeostasis; Humans; Inflammation; Inflammatory Bowel Diseases; Insulin; Kidney Diseases; Liver; Membrane Proteins; Metabolic Diseases; Naphthoquinones; Neoplasm Metastasis; Neoplasms; Neuralgia; Oxidants; Oxidation-Reduction; Protein Isoforms; Sepsis; Signal Transduction; Thyroid Hormone-Binding Proteins; Thyroid Hormones; Tissue Distribution | 2019 |
Creatinine: a review.
Measurement of creatinine has many applications. We review the determination of urinary creatinine as a valid index of completeness of 24-h urine collection, the clinical utility of the determination of creatinine clearance ratios, and measurement of the ratio of the clearance of specific analytes, such as amylase, to the ratio of clearance of creatinine. The chemistry and variables that affect the Jaffé reaction are reviewed, and attempts at improvement of specificity are discussed. We also review and assess techniques other than the Jaffé reaction for measurement of creatinine. Topics: Amylases; Colorimetry; Creatine; Humans; Indicators and Reagents; Kidney Diseases; Magnetic Resonance Spectroscopy; Naphthoquinones; Nitrobenzoates; Picrates | 1980 |
4 other study(ies) available for naphthoquinones and Kidney-Diseases
Article | Year |
---|---|
Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells.
Renal interstitial fibrosis is a common pathological feature of chronic kidney disease that may involve changes of metabolism in kidney cells. In the present study, we first showed that blockade of glycolysis with either dichloroacetate (DCA) or shikonin to target different glycolytic enzymes reduced renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Both inhibitors evidently suppressed the induction of fibronectin and collagen type I in obstructed kidneys, with DCA also showing inhibitory effects on collagen type IV and α-smooth muscle actin (α-SMA). Histological examination also confirmed less collagen deposition in DCA-treated kidneys. Both DCA and shikonin significantly inhibited renal tubular apoptosis but not interstitial apoptosis in UUO. Macrophage infiltration after UUO injury was also suppressed. Shikonin, but not DCA, caused obvious animal weight loss during UUO. To determine whether shikonin and DCA worked on tubular cells and/or fibroblasts, we tested their effects on cultured renal proximal tubular BUMPT cells and renal NRK-49F fibroblasts during hypoxia or transforming growth factor-β Topics: Animals; Apoptosis; Cell Line; Dichloroacetic Acid; Disease Models, Animal; Enzyme Inhibitors; Epithelial Cells; Extracellular Matrix; Fibroblasts; Fibrosis; Glycolysis; Kidney Diseases; Kidney Tubules; Macrophages; Male; Mice; Mice, Inbred C57BL; Naphthoquinones; Signal Transduction; Ureteral Obstruction | 2019 |
Dunnione protects against experimental cisplatin-induced nephrotoxicity by modulating NQO1 and NAD
Topics: Animals; Antineoplastic Agents; Apoptosis; Cisplatin; Gene Expression Regulation; Inflammation; Kidney Diseases; NAD; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Oxidative Stress; Protective Agents; Rats; Rats, Wistar | 2018 |
Haemolytic activity and nephrotoxicity of 2-hydroxy-1,4-naphthoquinone in rats.
The short-term toxicity of 2-hydroxy-1,4-naphthoquinone (lawsone) and 2-methyl-1,4-naphthoquinone (menadione) has been compared in rats. 2-Methyl-1,4-naphthoquinone has been shown previously to cause haemolytic anaemia in animals, and this was confirmed in the present experiment. 2-Hydroxyl-1,4-naphthoquinone was found also to cause haemolysis, in a dose-dependent manner, as reflected by decreased blood packed cell volumes and haemoglobin levels and by histopathological changes in spleen, liver and kidney. With both naphthoquinones, the haemolysis was of the oxidative type, characterized by the presence of Heinz bodies within erythrocytes. Haemolysis was the only toxic change identified in rats dosed with 2-methyl-1,4-naphthoquinone. In contrast, 2-hydroxyl-1,4-naphthoquinone was not only a haemolytic agent but also a nephrotoxin, causing renal enlargement, elevated plasma levels of urea and creatinine and histologically-identified tubular necrosis, largely confined to the distal segment of the proximal convoluted tubules. The relationship between the in vivo toxic effects of these naphthoquinones and previously-reported data on their in vitro cytotoxic action is discussed. Topics: Animals; Female; Hemolysis; Kidney Diseases; Naphthoquinones; Rats; Rats, Inbred Strains; Time Factors; Vitamin K | 1991 |
Natural occurrence of the mycotoxin viomellein in barley and the associated quinone-producing penicillia.
In a batch of barley associated with field cases of mycotoxic porcine nephropathy and containing ochratoxin A and citrinin, the mycoflora were isolated by parallel incubation at 10 and 25 degrees C. Subsequently, the isolated cultures were checked for production of nephrotoxins (xanthomegnin, viomellein, ochratoxin, and citrinin). The nephrotoxin producers, all isolated by incubation at 10 degrees C, were comprised of one culture of Penicillium viridicatum, five cultures of Penicillium cyclopium, and one culture of Penicillium crustosum, all producing xanthomegnin and viomellein. One culture of P. cyclopium produced citrinin. Viomellein was detected in the barley at a concentration of approximately 1 mg/kg. The method of analysis for xanthomegnin and viomellein included extraction with chloroform, partitioning in hexane-acetone, and thin-layer chromatographic separation and identification. The identity of the xanthomegnin and viomellein produced by the isolated fungi and of viomellein detected in the barley was supported by infrared spectroscopy. This is the first report of viomellein as a natural contaminant of foodstuffs. Topics: Animals; Food Contamination; Food Microbiology; Hordeum; Kidney Diseases; Mycotoxins; Naphthoquinones; Penicillium; Quinones; Swine; Swine Diseases | 1983 |