naphthoquinones has been researched along with Head-and-Neck-Neoplasms* in 11 studies
11 other study(ies) available for naphthoquinones and Head-and-Neck-Neoplasms
Article | Year |
---|---|
Pro-Apoptotic Antitumoral Effect of Novel Acridine-Core Naphthoquinone Compounds against Oral Squamous Cell Carcinoma.
Oral squamous cell carcinoma (OSCC) is a global public health problem with high incidence and mortality. The chemotherapeutic agents used in the clinic, alone or in combination, usually lead to important side effects. Thus, the discovery and development of new antineoplastic drugs are essential to improve disease prognosis and reduce toxicity. In the present study, acridine-core naphthoquinone compounds were synthesized and evaluated for their antitumor activity in OSCC cells. The mechanism of action, pharmacokinetics, and toxicity parameters of the most promising compound was further analyzed using in silico, in vitro, and in vivo methods. Among the derivatives, compound Topics: Acridines; Animals; Antineoplastic Agents; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Head and Neck Neoplasms; Molecular Docking Simulation; Mouth Neoplasms; Naphthoquinones; Squamous Cell Carcinoma of Head and Neck | 2022 |
Chemoselective Synthesis of Mannich Adducts from 1,4-Naphthoquinones and Profile as Autophagic Inducers in Oral Squamous Cell Carcinoma.
Oral squamous cell carcinoma (OSCC) is a worldwide public health problem, accounting for approximately 90% of all oral cancers, and is the eighth most common cancer in men. Cisplatin and carboplatin are the main chemotherapy drugs used in the clinic. However, in addition to their serious side effects, such as damage to the nervous system and kidneys, there is also drug resistance. Thus, the development of new drugs becomes of great importance. Naphthoquinones have been described with antitumor activity. Some of them are found in nature, but semi synthesis has been used as strategy to find new chemical entities for the treatment of cancer. In the present study, we promote a multiple component reaction (MCR) among lawsone, arylaldehydes, and benzylamine to produce sixteen chemoselectively derivated Mannich adducts of 1,4-naphthoquinones in good yield (up to 97%). The antitumor activities and molecular mechanisms of action of these compounds were investigated in OSCC models and the compound 6a induced cytotoxicity in three different tumor cell lines (OSCC4, OSCC9, and OSCC25) and was more selective (IS > 2) for tumor cells than the chemotropic drug carboplatin and the controls lapachol and shikonin, which are chemically similar compounds with cytotoxic effects. The 6a selectively and significantly reduced the amount of cell colony growth, was not hemolytic, and tolerable in mice with no serious side effects at a concentration of 100 mg/kg with a LD50 of 150 mg/kg. The new compound is biologically stable with a profile similar to carboplatin. Morphologically, 6a does not induce cell retraction or membrane blebs, but it does induce intense vesicle formation and late emergence of membrane bubbles. Exploring the mechanism of cell death induction, compound 6a does not induce ROS formation, and cell viability was not affected by inhibitors of apoptosis (ZVAD) and necroptosis (necrostatin 1). Autophagy followed by a late apoptosis process appears to be the death-inducing pathway of 6a, as observed by increased viability by the autophagy inhibitor (3-MA) and by the appearance of autophagosomes, later triggering a process of late apoptosis with the presence of caspase 3/7 and DNA fragmentation. Molecular modeling suggests the ability of the compound to bind to topoisomerase I and II and with greater affinity to hPKM2 enzyme than controls, which could explain the mechanism of cell death by autophagy. Finally, the in-silico prediction of drug-relevant properties showed Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Carboplatin; Carcinoma, Squamous Cell; Cell Line, Tumor; Head and Neck Neoplasms; Mice; Mouth Neoplasms; Naphthoquinones; Squamous Cell Carcinoma of Head and Neck | 2022 |
Discovery of Isoplumbagin as a Novel NQO1 Substrate and Anti-Cancer Quinone.
Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Movement; Cell Survival; Head and Neck Neoplasms; HeLa Cells; Humans; Mice; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; PC-3 Cells; Squamous Cell Carcinoma of Head and Neck; Xenograft Model Antitumor Assays | 2020 |
Antipyrimidine effects of five different pyrimidine de novo synthesis inhibitors in three head and neck cancer cell lines.
The pyrimidine de novo nucleotide synthesis consists of 6 sequential steps. Various inhibitors against these enzymes have been developed and evaluated in the clinic for their potential anticancer activity: acivicin inhibits carbamoyl-phosphate-synthase-II, N-(phosphonacetyl)-L- aspartate (PALA) inhibits aspartate-transcarbamylase, Brequinar sodium and dichloroallyl-lawsone (DCL) inhibit dihydroorotate-dehydrogenase, and pyrazofurin (PF) inhibits orotate-phosphoribosyltransferase. We compared their growth inhibition against 3 cell lines from head-and-neck-cancer (HEP-2, UMSCC-14B and UMSCC-14C) and related the sensitivity to their effects on nucleotide pools. In all cell lines Brequinar and PF were the most active compounds with IC50 (50% growth inhibition) values between 0.06-0.37 µM, Acivicin was as potent (IC50s 0.26-1 µM), but DCL was 20-31-fold less active. PALA was most inactive (24-128 µM). At equitoxic concentrations, all pure antipyrimidine de novo inhibitors depleted UTP and CTP after 24 hr exposure, which was most pronounced for Brequinar (between 6-10% of UTP left, and 12-36% CTP), followed by DCL and PF, which were almost similar (6-16% UTP and 12-27% CTP), while PALA was the least active compound (10-70% UTP and 13-68% CTP). Acivicin is a multi-target inhibitor of more glutamine requiring enzymes (including GMP synthetase) and no decrease of UTP was found, but a pronounced decrease in GTP (31-72% left). In conclusion, these 5 inhibitors of the pyrimidine de novo nucleotide synthesis varied considerably in their efficacy and effect on pyrimidine nucleotide pools. Inhibitors of DHO-DH were most effective suggesting a primary role of this enzyme in controlling pyrimidine nucleotide pools. Topics: Amides; Antineoplastic Agents; Aspartate Carbamoyltransferase; Aspartic Acid; Biphenyl Compounds; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing); Carcinoma, Squamous Cell; Cell Line, Tumor; Dihydroorotate Dehydrogenase; Head and Neck Neoplasms; Humans; Isoxazoles; Naphthoquinones; Orotate Phosphoribosyltransferase; Oxidoreductases Acting on CH-CH Group Donors; Phosphonoacetic Acid; Purine Nucleotides; Pyrazoles; Pyrimidine Nucleotides; Ribonucleosides; Ribose | 2018 |
YM155 Down-Regulates Survivin and Induces P53 Up-Regulated Modulator of Apoptosis (PUMA)-Dependent in Oral Squamous Cell Carcinoma Cells.
BACKGROUND YM155, which inhibits the anti-apoptotic protein survivin, is known to exert anti-tumor effects in various cancers. However, there were few reports describing the inhibitory effect of YM155 on human oral squamous cell carcinoma (OSCC) cells that highly express survivin. In this study, we investigated the anti-tumor effects of YM155 on OSCC cells and then examined its molecular mechanisms. MATERIAL AND METHODS SCC9 cells of OSCC were treated with series of concentrations of YM155 (0.01, 0.1, 1, and 10 ng/ml) for 6, 12, and 24 h. The effect of YM155 on survival of SCC9 cells was detected by MTT and colony formation assay. Cell apoptosis was detected by flow cytometric analysis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. Western blot was used to detect the protein expression of survivin, p53, and PUMA. Caspase-3 activity was measured by cleavage of the caspase-3 substrate. To test the role of PUMA and caspase-3 on YM155-induced apoptosis and growth inhibition, the SCC9 cells was transfected with PUMA siRNA or caspase-3 siRNA or control siRNA for 16 h before YM155 (1 and 10 ng/ml) treatment for 24 h. In addition, we also investigated the effect of YM155 in an in vivo xenograft model. RESULTS Treatment of YM155 efficiently reduced survivin expression and increased PUMA expression and caspase-3 activation in the SCC9 cells. YM155 treatment resulted in 18-86% decrease in cell viability, 10-60% decrease in colony numbers, and 8-40% increase in cell apoptosis (p<0.05 and p<0.01). However, the induction of cell apoptosis growth inhibition was reversed by PUMA siRNA or caspase-3 transfection. In addition, animals treated with YM155 showed more than 60% tumor growth inhibition compared to the controls (p<0.05). CONCLUSIONS YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin, and activation of the PUMA/caspase-3 cellular signaling processes. This study suggests that YM155 may be a potential molecular target with therapeutic relevance for the treatment of OSCC. Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Squamous Cell; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cell Survival; Down-Regulation; Head and Neck Neoplasms; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice; Mice, Nude; Mouth Neoplasms; Naphthoquinones; Proto-Oncogene Proteins; Squamous Cell Carcinoma of Head and Neck; Survivin; Transcriptional Activation; Xenograft Model Antitumor Assays | 2017 |
NQO1-Mediated Tumor-Selective Lethality and Radiosensitization for Head and Neck Cancer.
Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed.. quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis. β-Lap represents a novel therapeutic opportunity in HNC leading to tumor-selective lethality that will enhance the efficacy of IR. Immunohistochemical staining and Western blot assays were used to assess the expression levels of NQO1 in HNC cells and tumors. Forty-five percent of endogenous HNCs expressed elevated NQO1 levels. In addition, multiple HNC cell lines and tumors demonstrated elevated levels of NQO1 expression and activity and were tested for anticancer lethality and radiosensitization by β-lap using long-term survival assays. The combination of nontoxic β-lap doses and IR significantly enhanced NQO1-dependent tumor cell lethality, increased ROS, TUNEL-positive cells, DNA damage, NAD(+), and ATP consumption, and resulted in significant antitumor efficacy and prolonged survival in two xenograft murine HNC models, demonstrating β-lap radiosensitization of HNCs through a NQO1-dependent mechanism. This translational study offers a potential biomarker-driven strategy using NQO1 expression to select tumors susceptible to β-lap-induced radiosensitization. Mol Cancer Ther; 15(7); 1757-67. ©2016 AACR. Topics: Adenosine Triphosphate; Animals; Catalase; Cell Death; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Enzyme Activation; Gene Expression; Gene Expression Regulation, Neoplastic; Head and Neck Neoplasms; Humans; NAD(P)H Dehydrogenase (Quinone); Naphthoquinones; Radiation Tolerance; Radiation-Sensitizing Agents; Radiation, Ionizing; Reactive Oxygen Species; Survival Analysis; Xenograft Model Antitumor Assays | 2016 |
Down-regulation of Akt by methanol extracts of Impatiens balsamina L. promotes apoptosis in human oral squamous cell carcinoma cell lines.
The apoptotic activity of methanol extracts of Impatiens balsamina L. (MEIB) and related mechanisms in human oral squamous cell carcinoma (OSCC) cells have been systematically investigated.. The effects of MEIB on human OSCC cell lines were investigated using trypan blue exclusion assay, MTS assay, Western blot, 4'-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead assay, Immunohistochemistry, reverse transcription-polymerase chain reaction, and promoter assay.. MEIB decreased cell viability and induced apoptosis in HSC-4 cells. Higher levels of p-Akt expression were observed in OSCC than in normal oral mucosa (NOM), and it correlated with poor survival of the patients. MEIB dephosphorylated p-Akt and decreased Akt expression through proteasome-dependent degradation. LY294002 (PI3K inhibitor) decreased p-Akt and Akt, resulting in enhancing MEIB-induced apoptosis. MEIB down-regulated the expression level of survivin protein at the transcriptional level and YM155 (survivin inhibitor) decreased survivin, which facilitated MEIB-induced apoptosis. MEIB and LY294002 significantly increased Bax, thereby inducing the conformational change, mitochondrial translocation, and oligomerization. In addition, MEIB-induced growth inhibition and apoptosis in OSC-20, another human OSCC cells were mediated by regulating Akt and it downstream targets, survivin and Bax.. These results suggest that MEIB may serve as a potential drug candidate for the treatment of human OSCC. Topics: Adult; Antineoplastic Agents, Phytogenic; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Chromones; Down-Regulation; Head and Neck Neoplasms; Humans; Imidazoles; Impatiens; Methanol; Molar, Third; Morpholines; Mouth Mucosa; Mouth Neoplasms; Naphthoquinones; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Plant Extracts; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Squamous Cell Carcinoma of Head and Neck | 2015 |
Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma.
Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Beclin-1; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Docetaxel; Drug Resistance, Neoplasm; Head and Neck Neoplasms; Humans; Imidazoles; In Situ Nick-End Labeling; Inhibitor of Apoptosis Proteins; Lysosomal-Associated Membrane Protein 2; Membrane Proteins; Mice; Mice, Knockout; Mice, Nude; Microtubule-Associated Proteins; Mitochondria; Naphthoquinones; Phosphorylation; Retinoblastoma Protein; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; Survivin; Tamoxifen; Taxoids; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2015 |
Plumbagin suppresses epithelial to mesenchymal transition and stemness via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells.
Tongue squamous cell carcinoma (TSCC) is the most common malignancy in oral and maxillofacial tumors with highly metastatic characteristics. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone; PLB), a natural naphthoquinone derived from the roots of Plumbaginaceae plants, exhibits various bioactivities, including anticancer effects. However, the potential molecular targets and underlying mechanisms of PLB in the treatment of TSCC remain elusive. This study employed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic approach to investigate the molecular interactome of PLB in human TSCC cell line SCC25 and elucidate the molecular mechanisms. The proteomic data indicated that PLB inhibited cell proliferation, activated death receptor-mediated apoptotic pathway, remodeled epithelial adherens junctions pathway, and manipulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response signaling pathway in SCC25 cells with the involvement of a number of key functional proteins. Furthermore, we verified these protein targets using Western blotting assay. The verification results showed that PLB markedly induced cell cycle arrest at G2/M phase and extrinsic apoptosis, and inhibited epithelial to mesenchymal transition (EMT) and stemness in SCC25 cells. Of note, N-acetyl-l-cysteine (NAC) and l-glutathione (GSH) abolished the effects of PLB on cell cycle arrest, apoptosis induction, EMT inhibition, and stemness attenuation in SCC25 cells. Importantly, PLB suppressed the translocation of Nrf2 from cytosol to nucleus, resulting in an inhibition in the expression of downstream targets. Taken together, these results suggest that PLB may act as a promising anticancer compound via inhibiting Nrf2-mediated oxidative stress signaling pathway in SCC25 cells. This study provides a clue to fully identify the molecular targets and decipher the underlying mechanisms of PLB in the treatment of TSCC. Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Squamous Cell; Cell Cycle Proteins; Cell Line, Tumor; Dose-Response Relationship, Drug; Epithelial-Mesenchymal Transition; G2 Phase Cell Cycle Checkpoints; Head and Neck Neoplasms; Humans; Naphthoquinones; Neoplastic Stem Cells; NF-E2-Related Factor 2; Oxidative Stress; Protein Interaction Maps; Protein Transport; Proteomics; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; Time Factors; Tongue Neoplasms | 2015 |
YM155 reverses cisplatin resistance in head and neck cancer by decreasing cytoplasmic survivin levels.
Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of head and neck squamous cell carcinoma (HNSCC). However, acquisition of cisplatin resistance is common in patients with HNSCC, and it often leads to local and distant failure. In this study, we showed that survivin expression is significantly upregulated in HNSCC primary tumors and cell lines. In addition, survivin levels were significantly higher in human papilloma virus-negative patients that normally respond poorly to cisplatin treatment. Survivin expression was further increased in cisplatin-resistant cells (CAL27-CisR) as compared with its parent cells (CAL27). Therefore, we hypothesized that targeting of survivin in HNSCC could reverse the resistant phenotype in tumor cells, thereby enhancing the therapeutic efficacy of cisplatin. We used both in vitro and in vivo models to test the efficacy of YM155, a small molecule survivin inhibitor, either as a single agent or in combination with cisplatin. YM155 significantly decreased survivin levels and cell proliferation in a dose-dependent manner. In addition, YM155 pretreatment significantly reversed cisplatin resistance in cancer cells. Interestingly, YM155 treatment altered the dynamic localization of survivin in cells by inducing a rapid reduction in cytoplasmic survivin, which plays a critical role in its antiapoptotic function. In a severe combined immunodeficient mouse xenograft model, YM155 significantly enhanced the antitumor and antiangiogenic effects of cisplatin, with no added systemic toxicity. Taken together, our results suggest a potentially novel strategy to use YM155 to overcome the resistance in tumor cells, thereby enhancing the effectiveness of the chemotherapy in HNSCC. Topics: Adult; Aged; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cisplatin; Cytoplasm; Drug Synergism; Female; Head and Neck Neoplasms; Human papillomavirus 16; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Inhibitory Concentration 50; Male; Mice; Mice, SCID; Middle Aged; Naphthoquinones; Neovascularization, Pathologic; Papillomavirus Infections; Statistics, Nonparametric; Survivin; Tissue Array Analysis; Tumor Burden; Up-Regulation; Xenograft Model Antitumor Assays | 2012 |
The rotamase Pin1 is up-regulated, hypophosphorylated and required for cell cycle progression in head and neck squamous cell carcinomas.
The peptidyl-prolyl cis/trans isomerase Pin1 has been implicated in malignant transformation in multiple studies, however, little is known about its potential impact in head and neck cancer. This study evaluates the role of Pin1 in head and neck squamous cell carcinomas (HNSCCs). Pin1 expression and level of phosphorylation was evaluated by Western blot analysis and 2D-gel-electrophoresis. Pin1 was inhibited with juglone (5-hydroxy-1,4-naphthalenedione) or Pin1 specific siRNA and its influence on cell cycle checkpoint distribution was assessed by FACS analysis. Pin1 overexpression was found in HNSCC tissues and cell lines. 2D-gel-electrophoresis data pointed to Pin1 being hypophosphorylated in HNSCC cells which is consistent with overactivation of this rotamase. Inhibition of HNSCC cells with juglone or Pin1 siRNA induced the cell cycle inhibitor p21(WAF1/Cip1) with a concomitant reduction of cells in G2/M and an increased fraction of cells with fragmented DNA. Cell death did not correlate with significant levels of apoptosis in Pin1 depleted HNSCC cells. In summary, the data shows that Pin1 is overexpressed and hypophosphorylated in HNSCC, and that inhibition of Pin1 blocks cell cycle progression and triggers tumor cell death. Pin1 therefore could represent a new target for the development of improved HNSCC targeting drugs. Topics: Adult; Aged; Aged, 80 and over; Alkaline Phosphatase; Apoptosis; Blotting, Western; Carcinoma, Squamous Cell; Case-Control Studies; Cell Cycle; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p21; Electrophoresis, Gel, Two-Dimensional; Enzyme Inhibitors; Female; Head and Neck Neoplasms; Humans; Male; Middle Aged; Naphthoquinones; Neoplasm Proteins; NIMA-Interacting Peptidylprolyl Isomerase; Peptidylprolyl Isomerase; Phosphorylation; RNA, Small Interfering; Up-Regulation | 2009 |