naphthoquinones has been researched along with Fetal-Growth-Retardation* in 2 studies
2 other study(ies) available for naphthoquinones and Fetal-Growth-Retardation
Article | Year |
---|---|
Effects on metabolic parameters in young rats born with low birth weight after exposure to a mixture of pesticides.
Pesticide exposure during fetal life can lead to low birth weight and is commonly observed in reproductive toxicology studies. Associations have also been found in low birth weight babies born from pesticide-exposed gardeners. Since low birth weight is also linked to metabolic disorders, it can be speculated that early life exposure to pesticides could increase the risk of becoming obese or developing diabetes later in life. We have analyzed potential long-term effects of gestational and lactational exposure to a low dose mixture of six pesticides that individually can cause low birth weight: Cyromazine, MCPB, Pirimicarb, Quinoclamine, Thiram, and Ziram. Exposed male offspring, who were smaller than controls, displayed some degree of catch-up growth. Insulin and glucagon regulation was not significantly affected, and analyses of liver and pancreas did not reveal obvious histopathological effects. Efforts towards identifying potential biomarkers of metabolic disease-risk did not result in any strong candidates, albeit leptin levels were altered in exposed animals. In fat tissues, the key genes Lep, Nmb and Nmbr were altered in high dosed offspring, and were differentially expressed between sexes. Our results suggest that early-life exposure to pesticides may contribute to the development of metabolic disorders later in life. Topics: 2-Methyl-4-chlorophenoxyacetic Acid; Adipose Tissue; Animals; Butyrates; Carbamates; Diabetes Mellitus; Female; Fetal Growth Retardation; Infant, Low Birth Weight; Naphthoquinones; Pesticides; Pregnancy; Prenatal Exposure Delayed Effects; Pyrimidines; Rats; Rats, Wistar; Thiram; Triazines; Ziram | 2018 |
Fetal growth in rats treated with lapachol.
Lapachol is a naphthoquinone well known for its therapeutic potential. Previous studies have shown that lapachol does not interfere with embryonic development during the pre-implantation period. However, when administered during the organogenic period at the same dose level, it induces a high fetal death incidence. To evaluate the effect of lapachol during fetogenesis, 20 pregnant Wistar rats were randomly divided into two groups: vehicle (10 mL of a 50% aqueous ethanol solution/kg body weight) and treated (100 mg of lapachol/kg body weight). Lapachol was administered from the 17th to 20th day of pregnancy. The following variables were analyzed: maternal body weight from 16th to 21st day of pregnancy, food intake from 17th to 21st day of pregnancy, clinical signs of physical discomfort, ovarian weights, implantations, resorptions and mortality indices, fetal and placenta weights, external malformations, and fetal organ weights. Results indicated that lapachol was not toxic to mothers, although it was fetotoxic leading to fetal growth retardation. Topics: Abnormalities, Drug-Induced; Animals; Body Weight; Eating; Embryonic and Fetal Development; Female; Fetal Growth Retardation; Fetal Weight; Gestational Age; Naphthoquinones; Organ Size; Ovary; Placenta; Pregnancy; Rats; Rats, Wistar | 2002 |