naphthoquinones has been researched along with Esophageal-Neoplasms* in 11 studies
1 trial(s) available for naphthoquinones and Esophageal-Neoplasms
Article | Year |
---|---|
A clinical trial protocol paper discussing the BRIGHTER study.
Napabucasin is a novel oral first-in-class cancer stemness inhibitor. Preclinical and early phase clinical trials showed promising antitumor efficacy signals for napabucasin in a variety of malignancies. In this article, we describe the design and rationale for the now completed BRIGHTER trial, a multicenter, randomized, placebo-controlled, Phase III study designed to determine the efficacy and safety of combining napabucasin with paclitaxel in previously treated patients with advanced gastric and gastroesophageal junction adenocarcinoma (NCT02178956). Patients were randomized in a 1:1 fashion to receive weekly paclitaxel with either napabucasin or placebo. The study failed to achieve its primary end point of overall survival in the intention to treat population. Ongoing analysis of the secondary end points includes progression-free survival, objective response rate, disease control rate, the safety of the combination therapy and evaluation of efficacy in the biomarker-positive subpopulation. Topics: Adenocarcinoma; Antineoplastic Combined Chemotherapy Protocols; Benzofurans; Clinical Protocols; Disease-Free Survival; Double-Blind Method; Drug Administration Schedule; Esophageal Neoplasms; Humans; Immunohistochemistry; Kaplan-Meier Estimate; Naphthoquinones; Paclitaxel; Stomach Neoplasms; Survival Analysis; Treatment Outcome | 2018 |
10 other study(ies) available for naphthoquinones and Esophageal-Neoplasms
Article | Year |
---|---|
Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling.
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers, and it requires novel treatment approaches and effective drugs. In the present study, we found that treatment with plumbagin, a natural compound, reduced proliferation and survival of the KYSE150 and KYSE450 ESCC cell lines in a dose-dependent manner in vitro. The drug also effectively inhibited the viability of primary ESCC cells from fresh biopsy specimens. Furthermore, plumbagin-induced mitotic arrest and massive apoptosis in ESCC cells. Notably, the drug significantly suppressed the colony formation capacity of ESCC cells in vitro and the growth of KYSE150 xenograft tumors in vivo. At the molecular level, we found that exposure to plumbagin decreased both polo-like kinase 1 (PLK1) and phosphorylated protein kinase B (p-AKT) expression in both ESCC cell lines. Enforced PLK1 expression in ESCC cells not only markedly rescued cells from plumbagin-induced apoptosis and proliferation inhibition but also restored the impaired AKT activity. Furthermore, signal transducer and activator of transcription 3 (STAT3), a transcription factor of PLK1, was also inactivated in plumbagin-treated ESCC cells; however, the overexpression of a constitutively activated STAT3 mutant, STAT3C, reinstated the plumbagin-elicited blockade of PLK1-AKT signaling in ESCC cells. Taken together, these findings indicate that plumbagin inhibits proliferation and potentiates apoptosis in human ESCC cells in vitro and in vivo. Plumbagin may exert these antitumor effects by abrogating STAT3-PLK1-AKT signaling, which suggests that plumbagin may be a novel, promising anticancer agent for the treatment of ESCC. Topics: Animals; Apoptosis; Carcinogenesis; Cell Cycle Checkpoints; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Cell Survival; Down-Regulation; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Female; Humans; Mice, Nude; Naphthoquinones; Polo-Like Kinase 1; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Signal Transduction; STAT3 Transcription Factor; Xenograft Model Antitumor Assays | 2018 |
Plumbagin, a natural naphthoquinone, inhibits the growth of esophageal squamous cell carcinoma cells through inactivation of STAT3.
Although plumbagin, a natural naphthoquinone, has exhibited antiproliferative activity in numerous types of cancer, its anticancer potential in esophageal squamous cell carcinoma (ESCC) remains unclear. In the present study, the effect of plumbagin on the growth of ESCC cells was investigated in vitro and in vivo. ESCC cells were treated with plumbagin and tested for cell cycle distribution and apoptosis. The involvement of STAT3 signaling in the effect of plumbagin was examined. The results demonstrated that plumbagin treatment suppressed ESCC cell viability and proliferation, yet normal esophageal epithelial cell viability was not affected. Plumbagin treatment increased the proportion of cells in the G0/G1 phase of the cell cycle and decreased the proportion of cells in the S phase. Furthermore, plumbagin‑treated ESCC cells displayed a significantly greater % of apoptotic cells. Western blot analysis confirmed that plumbagin upregulated tumor protein p53 and cyclin‑dependent kinase inhibitor 1A (also known as p21), while it downregulated cyclin D1, cyclin‑dependent kinase 4, and induced myeloid leukemia cell differentiation protein Mcl‑1. Mechanistically, plumbagin inhibited STAT3 activation, and overexpression of constitutively active STAT3 reversed the plumbagin‑mediated growth suppression in ESCC cells. In vivo studies demonstrated that plumbagin delayed the growth of ESCC xenograft tumors and reduced STAT3 phosphorylation. Overall, plumbagin was demonstrated to target STAT3 signaling and to inhibit the growth of ESCC cells both in vitro and in vivo, suggesting that it may represent a potential anticancer agent for ESCC. Topics: Animals; Apoptosis; Carcinoma, Squamous Cell; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; G1 Phase; Humans; Mice; Naphthoquinones; Resting Phase, Cell Cycle; STAT3 Transcription Factor; Xenograft Model Antitumor Assays | 2018 |
Survivin is critically involved in VEGFR2 signaling-mediated esophageal cancer cell survival.
Vascular endothelial growth factor (VEGF) signaling promotes angiogenesis by stimulating the migration and proliferation of endothelial cells. The aim of this study was to investigate the expression of Survivin and VEGF receptor 1/2/3 (VEGFR 1/2/3) in esophageal carcinoma tissues (ECTs), and to explore the therapy effect of the suppression of VEGFR2 signaling. Here, we found that VEGFR2 and Survivin had high expressions and a significant correlation (r = 0.874, P < 0.002) in ECTs. Further, we found that VEGFR2 signaling could activate the AKT1/MDM2/Survivin pathway. The inhibition of VEGFR2 signaling with the XL184 treatment downregulated the phosphorylation of AKT1 and MDM2, and then, increased the activation of Caspase 3/7, resulting in the reduction of cell viability and the apoptosis of HUVECs. Additionally, in the esophageal tumor model, the tumor growth was significantly suppressed by blocking Survivin and the suppression of tumor growth was more effective in the combined treatment by blocking Survivin and Bcl-xl/Bcl-2. Our data thus revealed that Survivin in the signal downstream of VEGFR2 played an important role in esophageal cancer cell survival and might be a potential candidate target for the combined therapy for esophageal cancer. Topics: Aniline Compounds; Animals; bcl-X Protein; Caspase 3; Caspase 7; Cell Line, Tumor; Cell Proliferation; Cell Survival; Esophageal Neoplasms; Human Umbilical Vein Endothelial Cells; Humans; Imidazoles; Mice, Inbred BALB C; Models, Biological; Naphthoquinones; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-mdm2; Signal Transduction; Sulfonamides; Survivin; Up-Regulation; Vascular Endothelial Growth Factor Receptor-2 | 2018 |
Survivin activates NF‑κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma.
Survivin and transcription factor p65 (NF‑κB p65) participate in the progression of esophageal squamous cell carcinoma (ESCC). However, the mechanism of NF‑κB p65 activation in ESCC remains to be elucidated. The aim of the present study was to investigate the role of survivin in the activation of NF‑κB p65 in ESCC. The expression levels of survivin, NF‑κB p65, inhibitor of nuclear factor κB kinase subunit α (IKKα) and inhibitor of nuclear factor κB kinase subunit β (IKKβ) were detected in ESCC tissue samples. Eca109 and KYSE150 cells were cultured and survivin activity was modulated via transfection with an overexpression plasmid, a small hairpin RNA plasmid and a specific inhibitor. Quantitative reverse transcription-polymerase chain reaction and western blotting assays were conducted to assess the effects of survivin on the expression levels of IKKα, IKKβ and NF‑κB p65. Cell cycle and apoptosis assays were conducted to detect surviving-dependent cellular behavior changes. In addition, the luciferase reporter gene assay and chromatin immunoprecipitation assay were conducted to determine the genomic sites responsible for surviving-induced activation of NF‑κB p65. The present study demonstrated that the expression of survivin is positively correlated with IKKα and IKKβ in ESCC tissues. Survivin affected the mRNA and protein expression levels of IKKα, IKKβ, and NF‑κB p65 in Eca109 and KYSE150 cells. Furthermore, survivin increased the transcriptional activity of the IKKβ promoter and bound to the IKKβ promoter region in the Eca109 cells. Downregulation of survivin arrested the cell cycle at the G2/M phase and induced apoptosis. Results of the present study suggest that survivin activates NF‑κB p65 in Eca109 cells via binding to the IKKβ promoter region and upregulating IKKβ promoter transcriptional activity. Survivin overexpression activates NF‑κB p65, which is important in the acquisition and maintenance of the oncogenic characteristics of ESCC. Topics: Apoptosis; Carcinoma, Squamous Cell; Cell Count; Cell Line, Tumor; Cell Survival; Chromatin Immunoprecipitation; Down-Regulation; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; G2 Phase Cell Cycle Checkpoints; Gene Knockdown Techniques; Humans; I-kappa B Kinase; Imidazoles; Inhibitor of Apoptosis Proteins; Naphthoquinones; Promoter Regions, Genetic; Protein Binding; RNA, Small Interfering; Survivin; Transcription Factor RelA; Up-Regulation | 2016 |
YM155, a survivin suppressant, triggers PARP-dependent cell death (parthanatos) and inhibits esophageal squamous-cell carcinoma xenografts in mice.
Here we demonstrated that sepantronium bromide (YM155), a survivin suppressant, inhibited esophageal squamous-cell carcinoma (ESCC) growth in mice bearing human ESCC xenografts without affecting body weight. In cell culture, YM155 decreased survivin levels and caused PARP-1 activation, poly-ADP polymer formation, and AIF translocation from the cytosol to the nucleus. Genetic knockdown of PARP-1 or AIF abrogated YM155-induced parthanatos cell death. Furthermore, FOS, JUN and c-MYC gene transcription, which is stimulated by activated PARP-1, was increased following YM155 treatment. Our data demonstrate that YM155 did not trigger apoptosis, but induced parthanatos, a cell death dependent on PARP-1 hyper-activation, and support clinical development of YM155 in ESCC. Topics: Animals; Blotting, Western; Carcinoma, Squamous Cell; Cell Death; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Esophageal Neoplasms; Female; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Mice, Nude; Microscopy, Electron, Transmission; Microscopy, Fluorescence; Naphthoquinones; Oligonucleotide Array Sequence Analysis; Poly(ADP-ribose) Polymerases; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Survivin; Tumor Burden; Xenograft Model Antitumor Assays | 2015 |
Small-molecule survivin inhibitor YM155 enhances radiosensitization in esophageal squamous cell carcinoma by the abrogation of G2 checkpoint and suppression of homologous recombination repair.
Survivin is overexpressed in cancer cells and plays a crucial role in apoptosis evasion. YM155, a small-molecule inhibitor of survivin, could enhance the cytotoxicity of various DNA-damaging agents. Here, we evaluated the radiosensitizaion potential of YM155 in human esophageal squamous cell carcinoma (ESCC).. Cell viability was determined by CCK8 assay. The radiosensitization effect of YM155 was evaluated by clonogenic survival and progression of tumor xenograft. Cell cycle progression was determined by flow cytometric analysis. Radiation-induced DNA double strand break (DSB) and homologous recombination repair (HRR) were detected by the staining of γ-H2AX and RAD51, respectively. Expression of survivin and cell cycle regulators was detected by Western blot analysis.. YM155 induced radiosensitization in ESCC cell lines Eca109 and TE13, associated with the abrogation of radiation induced G2/M checkpoint, impaired Rad51 focus formation, and the prolongation of γ-H2AX signaling. G2/M transition markers, including the activation of cyclinB1/Cdc2 kinase and the suppression of Cdc2 Thr14/Tyr15 phosphorylation were induced by YM155 in irradiated cells. The combination of YM155 plus irradiation delayed the growth of ESCC tumor xenografts to a greater extent compared with either treatment modality alone.. Our findings suggest that the abrogation of G2 checkpoint and the inhibition of HRR contribute to radiosensitization by YM155 in ESCC cells. Topics: Animals; Antineoplastic Agents; Blotting, Western; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Survival; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Flow Cytometry; Fluorescent Antibody Technique; G2 Phase Cell Cycle Checkpoints; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Radiation-Sensitizing Agents; Recombinational DNA Repair; Survivin; Xenograft Model Antitumor Assays | 2014 |
Cytotoxicity of lapachol, β-lapachone and related synthetic 1,4-naphthoquinones against oesophageal cancer cells.
Naphthoquinones have been found to have a wide range of biological activities, including cytotoxicity to cancer cells. The secondary metabolites lapachol, α- and β-lapachone and a series of 25 related synthetic 1,4-naphthoquinones were screened against the oesophageal cancer cell line (WHCO1). Most of the compounds exhibited enhanced cytotoxicity (IC50 1.6-11.7 μM) compared to the current drug of choice cisplatin (IC50 = 16.5 μM). This study also established that the two new synthetic halogenated compounds 12a and 16a (IC50 = 3.0 and 7.3 μM) and the previously reported compound 11a (IC50 = 3.9 μM), were non-toxic to NIH3T3 normal fibroblast cells. Cell death of oesophageal cancer cells by processes involving PARP cleavage caused by 11a was shown to be associated with elevated c-Jun levels, suggesting a role for this pathway in the mechanism of action of this cohort of naphthoquinone compounds. Topics: Animals; Antineoplastic Agents; Cell Death; Cell Line, Tumor; Cell Proliferation; Crystallography, X-Ray; Dose-Response Relationship, Drug; Esophageal Neoplasms; Humans; Mice; Models, Molecular; Molecular Structure; Naphthoquinones; NIH 3T3 Cells; Structure-Activity Relationship | 2013 |
Survivin expression in primary malignant melanoma of the esophagus.
Topics: Antineoplastic Agents; Biomarkers, Tumor; Biopsy; Cysteine Proteinase Inhibitors; Esophageal Neoplasms; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Male; Melanoma; Microtubule-Associated Proteins; Middle Aged; Naphthoquinones; Survivin; Treatment Outcome | 2009 |
[Detection of the anti-cancer biological effect of naphthoquinone pigment-LIII].
Naphthoquinone pigment-LIII, an extract from Arnebia euchroma, could apparently inhibit the proliferation of stomach cancer cell line and esophagus cancer cell line. At the effective concentration of 5 micrograms/ml, the mitotic index and growth curve declined without showing any damage to human normal cells. At 5-10 micrograms/ml, the colony efficiency of cancer cells became significantly low. The anti-cancer effect of Naphthoquinone pigment-LIII might be related to its role of influencing the amount of RNA and ultrastructure of cancer cells which was discussed in this paper. Topics: Antineoplastic Agents, Phytogenic; Esophageal Neoplasms; Humans; Naphthoquinones; Stomach Neoplasms; Tumor Cells, Cultured | 1990 |
[Use of naphthidon as a radiosensitizer in radiotherapy of patients with malignant neoplasms].
Topics: Adult; Esophageal Neoplasms; Female; Humans; Lung Neoplasms; Male; Middle Aged; Naphthoquinones; Peritoneal Neoplasms; Radiation-Sensitizing Agents; Radiotherapy Dosage; Rectal Neoplasms; Urinary Bladder Neoplasms | 1971 |