naphthoquinones has been researched along with Colitis--Ulcerative* in 6 studies
6 other study(ies) available for naphthoquinones and Colitis--Ulcerative
Article | Year |
---|---|
Juglone regulates gut microbiota and Th17/Treg balance in DSS-induced ulcerative colitis.
Juglone, mainly isolates from the green walnut husks of Juglans mandshurica, exhibits anti-cancer and anti-inflammaroty activities. But its protection on ulcerative colitis (UC) has never been explored. In this study, we first evaluated whether juglone ameliorated UC, and investigated its effects on gut microbiota and Th17/Treg balance in DSS-induced UC mice model. The model was established by administrating 2.7% DSS for seven days. Juglone was given daily by gavage for ten days, once a day. The disease activity index (DAI) decrease and pathological characteristics improvement demonstrated that the UC in mice was alleviated by juglone. Juglone treatment significantly inhibited the protein levels of IL-6, TNF-α and IL-1β, improved the protein expression of IL-10. In addition, juglone altered microbial diversity and gut microbiota composition, including the enhancement of the ratio of Firmicutes to Bacteroidota and the abundance of Actinobacteriota, and decrease of the abundance of Verrucomicrobiota. Juglone treatment also inhibited the protein expressions of IL-6, STAT3 and RORγt, meanwhile improved the protein level of FOXP3. Furthermore, juglone inhibited Th17 development and increased Treg generation, beneficial to Th17/Treg balance. Together, we herein provided the first evidence to support that juglone, especially the high dose, possibly protected mice against UC by modulating gut microbiota and restoring Th17/Treg homeostasis. Topics: Animals; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Drug Evaluation, Preclinical; Gastrointestinal Microbiome; Humans; Intestinal Mucosa; Male; Mice; Naphthoquinones; T-Lymphocytes, Regulatory; Th17 Cells | 2021 |
Juglone Suppresses Inflammation and Oxidative Stress in Colitis Mice.
Juglone (JUG), a natural product found in walnut trees and other plants, shows potent antioxidant, antimicrobial, and immunoregulatory activities. However, it remains unknown whether JUG can alleviate ulcerative colitis. This study aims to explore the effect of JUG on dextran sulfate sodium (DSS)-induced colitis in mice. The mice were randomly assigned into three groups: the vehicle group, the DSS group, and the JUG group. The experiments lasted for 17 days; during the experiment, all mice received dimethyl sulfoxide (DMSO, 0.03% v/v)-containing water, while the mice in the JUG group received DMSO-containing water supplemented with JUG (0.04 w/v). Colitis was induced by administering DSS (3% w/v) orally for 10 consecutive days. The results showed that the JUG treatment significantly ameliorated body weight loss and disease activity index and improved the survival probability, colon length, and tissue damage. JUG reversed the DSS-induced up-regulation of proinflammatory cytokines, including interleukin (IL)-6, 12, 21, and 23, and tumor necrosis factor-alpha, and anti-inflammatory cytokines, such as IL-10 and transforming growth factor-beta, in the serum of the colitis mice. Additionally, the activation of mitochondrial uncoupling protein 2 and phospho-Nuclear Factor-kappa B p65 and the inhibition of the kelch-like ECH-associated protein 1 and NF-E2-related factor 2 induced by DSS were also reversed under JUG administration. Although the JUG group possessed a similar microbial community structure as the DSS group, JUG enriched potential beneficial microbes such as Topics: Animals; Colitis, Ulcerative; Inflammation; Male; Mice; Mice, Inbred C57BL; Naphthoquinones; Oxidative Stress | 2021 |
Therapeutic effect of a hydroxynaphthoquinone fraction on dextran sulfate sodium-induced ulcerative colitis.
To evaluate the therapeutic effect of hydroxynaphthoquinone mixture (HM) on dextran sulfate sodium (DSS)-induced colitis and explore the underlying mechanisms.. BALB/c mice received 3.5% DSS for 6 d to induce ulcerative colitis. Groups of mice were orally administered HM 3.5, 7 and 14 mg/kg and mesalazine 200 mg/kg per day for 7 d. During the experiment, clinical signs and body weight, stool consistency and visible fecal blood were monitored and recorded daily. A disease activity index score was calculated for each animal. At the conclusion of the experiment, the colonic histopathological lesions were evaluated. Myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) levels were determined. Protein expression levels of TNF-α, nuclear factor-κB (NF-κB) p65, inhibitor of κB (IκB) and phosphorylation of IκB (p-IκB) were analyzed by Western blot analysis.. Administration of 3.5% DSS for 6 d successfully induced acute colitis associated with soft stool, diarrhea, rectal bleeding, and colon shortening, as well as a loss of body weight. Administration of HM effectively attenuated the severity of colonic mucosa injury. For histopathological analysis, HM treatment improved histological alterations and lowered pathological scores compared with the DSS only group. This manifested as a reduction in the extent of colon injury and inflammatory cell infiltration, as well as the degree of mucosal destruction. In addition, HM at doses of 7 and 14 mg/kg significantly decreased MPO activity in colonic tissue (0.98 ± 0.22 U/g vs 1.32 ± 0.24 U/g, 0.89 ± 0.37 U/g vs 1.32 ± 0.24 U/g tissue, P < 0.05) and serum TNF-α levels (68.78 ± 7.34 ng/L vs 88.98 ± 17.79 ng/L, 64.13 ± 14.13 ng/L vs 88.98 ± 17.79 ng/L, P < 0.05). Furthermore, HM down-regulated the expression of TNF-α, NF-κB p65 and p-IκBα in colonic tissue while up-regulating IκBα protein expression. These results suggest that the significant anti-inflammatory effect of HM may be attributable to its inhibition of TNF-α production and NF-κB activation.. HM had a favorable therapeutic effect on DSS-induced ulcerative colitis, supporting its further development and clinical application in inflammatory bowel disease. Topics: Animals; Anti-Inflammatory Agents; Boraginaceae; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Dose-Response Relationship, Drug; Gastrointestinal Agents; Inflammation Mediators; Mice, Inbred BALB C; Naphthoquinones; Phytotherapy; Plant Extracts; Plant Roots; Plants, Medicinal; Signal Transduction; Time Factors | 2014 |
Interventional effects of plumbagin on experimental ulcerative colitis in mice.
Plumbagin (1) is a naphthoquinone constituent of plants that have been used in traditional systems of medicine since ancient times. In the present study, the role of 1 was examined on the amelioration of ulcerative colitis, an inflammatory bowel disease that is not curable currently. Plumbagin was tested at a dose of 6-10 mg/kg body weight in acute and chronic disease models. Diseased mice receiving 1 at 8-10 mg/kg demonstrated a significant suppression of disease symptoms in both models. However, body weight loss was not restored in either of the models. Levels of proinflammatory cytokines (TNF-α, IFN-γ, and IL-17) were reduced significantly by 1 in mice suffering from chronic disease, while cytokine levels remained unaffected in mice with acute disease. However, the percentage of inflammatory (CD14+/CD16+) monocytes present in peripheral blood was significantly reduced by >3-fold (p < 0.05) in treatment groups relative to controls in the acute model. Histological evaluations exhibited the restoration of goblet cells, crypts, and the submucosa along with a significant reduction in monocyte aggregation in colon sections from mice receiving treatment with 1. Restoration in colon size was also observed in the treatment groups. Topics: Animals; Colitis, Ulcerative; Colon; Cytokines; Disease Models, Animal; Interleukin-17; Male; Mice; Molecular Structure; Naphthoquinones; Tumor Necrosis Factor-alpha | 2013 |
Effectiveness of a hydroxynaphthoquinone fraction from Arnebia euchroma in rats with experimental colitis.
To evaluate the potential effectiveness of hydroxynaphthoquinone mixture (HM) in rats with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis.. Colitis was induced by intracolonic administration of TNBS (80 mg/kg, dissolved in 50% ethanol). Rats were treated daily for 7 d with HM (2.5, 5, 10 mg/kg) and mesalazine 100 mg/kg 24 h after TNBS instillation. Disease progression was monitored daily by observation of clinical signs and body weight change. At the end of the experiment, macroscopic and histopathologic lesions of rats were scored, and myeloperoxidase (MPO) activity was determined. We also determined inflammatory cytokine tumor necrosis factor (TNF)-α level by ELISA, Western blotting and immunochemistry to explore the potential mechanisms of HM.. After intracolonic instillation of TNBS, animals developed colitis associated with soft stool, diarrhea and marked colonic destruction. Administration of HM significantly attenuated clinical and histopathologic severity of TNBS-induced colitis in a dose-dependent manner. It abrogated body weight loss, diarrhea and inflammation, decreased macroscopic damage score, and improved histological signs, with a significant reduction of inflammatory infiltration, ulcer size and the severity of goblet cell depletion (all P < 0.05 vs TNBS alone group). HM could reduce MPO activity. In addition, it also decreased serum TNF-α level and down-regulated TNF-α expression in colonic tissue. This reduction was statistically significant when the dose of HM was 10 mg/kg (P < 0.05 vs TNBS alone group), and the effect was comparable to that of mesalazine and showed no apparent adverse effect. The underlying mechanism may be associated with TNF-α inhibition.. These findings suggest that HM possesses favourable therapeutic action in TNBS-induced colitis, which provides direct pharmacological evidence for its clinical application. Topics: Animals; Anti-Inflammatory Agents; Boraginaceae; Colitis, Ulcerative; Colon; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Gastrointestinal Agents; Goblet Cells; Inflammation Mediators; Male; Mesalamine; Naphthoquinones; Peroxidase; Phytotherapy; Plant Extracts; Plants, Medicinal; Rats; Rats, Sprague-Dawley; Time Factors; Trinitrobenzenesulfonic Acid; Tumor Necrosis Factor-alpha | 2013 |
[Attempted treatment of hemorrhagic rectocolitis by vitamin K].
Topics: Antifibrinolytic Agents; Colitis; Colitis, Ulcerative; Humans; Naphthoquinones; Proctocolitis; Vitamin K | 1950 |