naphthoquinones and Cardiomyopathies

naphthoquinones has been researched along with Cardiomyopathies* in 2 studies

Other Studies

2 other study(ies) available for naphthoquinones and Cardiomyopathies

ArticleYear
Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 93

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future.

    Topics: Animals; Apoptosis; Cardiomyopathies; Caspase 3; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Fibrosis; Gene Expression Regulation; Heart; Heart Failure; HSP70 Heat-Shock Proteins; Inflammation; Isoproterenol; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Naphthoquinones; NF-kappa B

2017
β-Lapachone ameliorates lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice.
    PloS one, 2014, Volume: 9, Issue:3

    Lipotoxic cardiomyopathy is caused by myocardial lipid accumulation and often occurs in patients with diabetes and obesity. This study investigated the effects of β-lapachone (β-lap), a natural compound that activates Sirt1 through elevation of the intracellular NAD+ level, on acyl CoA synthase (ACS) transgenic (Tg) mice, which have lipotoxic cardiomyopathy. Oral administration of β-lap to ACS Tg mice significantly attenuated heart failure and inhibited myocardial accumulation of triacylglycerol. Electron microscopy and measurement of mitochondrial complex II protein and mitochondrial DNA revealed that administration of β-lap restored mitochondrial integrity and biogenesis in ACS Tg hearts. Accordingly, β-lap administration significantly increased the expression of genes associated with mitochondrial biogenesis and fatty acid metabolism that were down-regulated in ACS Tg hearts. β-lap also restored the activities of Sirt1 and AMP-activated protein kinase (AMPK), the two key regulators of metabolism, which were suppressed in ACS Tg hearts. In H9C2 cells, β-lap-mediated elevation of AMPK activity was retarded when the level of Sirt1 was reduced by transfection of siRNA against Sirt1. Taken together, these results indicate that β-lap exerts cardioprotective effects against cardiac lipotoxicity through the activation of Sirt1 and AMPK. β-lap may be a novel therapeutic agent for the treatment of lipotoxic cardiomyopathy.

    Topics: Acyl Coenzyme A; Acyltransferases; AMP-Activated Protein Kinases; Animals; Cardiomyopathies; Fibrosis; Gene Knockdown Techniques; Lipids; Mice, Transgenic; Mitochondria, Heart; Myocardium; Naphthoquinones; Signal Transduction; Sirtuin 1; Triglycerides; Ultrasonography; Ventricular Remodeling

2014