naltrindole and Substance-Withdrawal-Syndrome

naltrindole has been researched along with Substance-Withdrawal-Syndrome* in 14 studies

Other Studies

14 other study(ies) available for naltrindole and Substance-Withdrawal-Syndrome

ArticleYear
Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome.
    Journal of psychopharmacology (Oxford, England), 2017, Volume: 31, Issue:9

    Animal and clinical researches indicate that the opioid system exerts a crucial role in the etiology of mood disorders and is a target for intervention in depression treatment. This study investigated the contribution of the opioid system to the antidepressant-like action of acute or repeated m-trifluoromethyl-diphenyl diselenide administration to Swiss mice. m-Trifluoromethyl-diphenyl diselenide (50 mg/kg, intragastric) produced an antidepressant-like action in the forced swimming test from 30 min to 24 h after treatment. This effect was blocked by the µ and δ-opioid receptor antagonists, naloxonazine (10 mg/kg, intraperitoneally) and naltrindole (3 mg/kg, intraperitoneally), and it was potentiated by a κ-opioid receptor antagonist, norbinaltrophimine (1 mg/kg, subcutaneously ). Combined treatment with subeffective doses of m-trifluoromethyl-diphenyl diselenide (10 mg/kg, intragastric) and morphine (1 mg/kg, subcutaneously) resulted in a synergistic antidepressant-like effect. The opioid system contribution to the m-trifluoromethyl-diphenyl diselenide antidepressant-like action was also demonstrated in the modified tail suspension test, decreasing mouse immobility and swinging time and increasing curling time, results similar to those observed using morphine, a positive control. Treatment with m-trifluoromethyl-diphenyl diselenide induced neither tolerance to the antidepressant-like action nor physical signs of withdrawal, which could be associated with the fact that m-trifluoromethyl-diphenyl diselenide did not change the mouse cortical and hippocampal glutamate uptake and release. m-Trifluoromethyl-diphenyl diselenide treatments altered neither locomotor nor toxicological parameters in mice. These findings demonstrate that m-trifluoromethyl-diphenyl diselenide elicited an antidepressant-like action by direct or indirect μ and δ-opioid receptor activation and the κ-opioid receptor blockade, without inducing tolerance, physical signs of withdrawal and toxicity.

    Topics: Analgesics, Opioid; Animals; Antidepressive Agents; Behavior, Animal; Depression; Depressive Disorder; Male; Mice; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Organosilicon Compounds; Receptors, Opioid, kappa; Substance Withdrawal Syndrome; Swimming

2017
Involvement of delta opioid receptors in alcohol withdrawal-induced mechanical allodynia in male C57BL/6 mice.
    Drug and alcohol dependence, 2016, Oct-01, Volume: 167

    As a legal drug, alcohol is commonly abused and it is estimated that 17 million adults in the United States suffer from alcohol use disorder. Heavy alcoholics can experience withdrawal symptoms including anxiety and mechanical allodynia that can facilitate relapse. The molecular mechanisms underlying this phenomenon are not well understood, which stifles development of new therapeutics. Here we investigate whether delta opioid receptors (DORs) play an active role in alcohol withdrawal-induced mechanical allodynia (AWiMA) and if DOR agonists may provide analgesic relief from AWiMA.. To study AWiMA, adult male wild-type and DOR knockout C57BL/6 mice were exposed to alcohol by a voluntary drinking model or oral gavage exposure model, which we developed and validated here. We also used the DOR-selective agonist TAN-67 and antagonist naltrindole to examine the involvement of DORs in AWiMA, which was measured using a von Frey model of mechanical allodynia.. We created a robust model of alcohol withdrawal-induced anxiety and mechanical allodynia by orally gavaging mice with 3g/kg alcohol for three weeks. AWiMA was exacerbated and prolonged in DOR knockout mice as well as by pharmacological blockade of DORs compared to control mice. However, analgesia induced by TAN-67 was attenuated during withdrawal in alcohol-gavaged mice.. DORs appear to play a protective role in the establishment of AWiMA. Our current results indicate that DORs could be targeted to prevent or reduce the development of AWiMA during alcohol use; however, DORs may be a less suitable target to treat AWiMA during active withdrawal.

    Topics: Analgesics; Analgesics, Opioid; Animals; Ethanol; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Narcotic Antagonists; Pain Management; Quinolines; Receptors, Opioid, delta; Receptors, Opioid, mu; Substance Withdrawal Syndrome

2016
Enkephalin analog, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), inhibits the ethanol withdrawal-induced anxiety-like behavior in rats.
    Alcohol (Fayetteville, N.Y.), 2015, Volume: 49, Issue:3

    An analog of enkephalin, cyclo[N(ε),N(β)-carbonyl-D-Lys(2),Dap(5)] enkephalinamide (cUENK6), is predominantly a functional agonist of μ-opioid receptors (MOPr) and, to a lesser extent, of δ-opioid receptors (DOPr) in vitro. The aim of the present study was to determine whether cUENK6 could affect ethanol withdrawal-induced anxiety-like behavior in the elevated plus maze (EPM) test in rats. An anxiety-like effect of withdrawal was predicted to occur in the EPM test 24 h after the last ethanol administration (2 g/kg, intraperitoneally [i.p.]; 15% w/v once daily for 9 days). Ethanol withdrawal decreased the percent of time spent by rats in the open arms and the percent of open-arms entries. cUENK6 (0.25 nmol), given by intracerebroventricular (i.c.v.) injection, significantly reversed these anxiety-like effects of ethanol withdrawal and elevated the percent of time spent by rats in the open arms and the percent of open-arms entries. These effects of cUENK6 were significantly inhibited by the DOPr antagonist naltrindole (NTI) (5 nmol, i.c.v.), but not by the MOPr antagonist β-funaltrexamine (β-FNA) (5 nmol, i.c.v.). The preferential DOPr agonist [Leu(5)]-enkephalin (LeuEnk) (2.7 and 5.4 nmol, i.c.v.) and the MOPr agonist morphine (6.5 and 13 nmol, i.c.v.) reduced the anxiety-like effects of ethanol withdrawal. cUENK6 at the dose of 0.25 nmol did not disturb locomotor activity in the EPM, in contrast to cUENK6 at the dose of 0.5 nmol, and morphine at 6.5 and 13 nmol. However, similarly to LeuEnk, cUENK6 induced the anxiolytic-like effects in naïve rats. Thus, our study suggests that cUENK6 reduced ethanol withdrawal-induced anxiety-like behavior by activation of δ-opioid receptors rather than μ-opioid receptors.

    Topics: Analgesics, Opioid; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Central Nervous System Depressants; Enkephalin, Leucine; Enkephalins; Ethanol; Morphine; Naltrexone; Narcotic Antagonists; Neurotransmitter Agents; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu; Substance Withdrawal Syndrome

2015
Activators of potassium M currents have anticonvulsant actions in two rat models of encephalitis.
    European journal of pharmacology, 2007, Jan-19, Volume: 555, Issue:1

    Opioid systems in hippocampus regulate excitability and kappa opioids have a role in anticonvulsant protection, but their mechanisms of action are incompletely understood. We examined the ability of opioid and nonopioid agents with overlapping ionic mechanisms and actions similar to kappa opioid agonists, to block seizures in rat models of encephalitis due to Borna Disease virus and Herpes Simplex Virus Type-1. Naltrindole, a delta antagonist and thus a kappa opioid sparing agent, (10 mg/kg s.c.) blocked spontaneous and naloxone (opioid antagonist)-induced seizures in the models, but produced somatic signs similar to opioid withdrawal. Given that delta antagonists as well as kappa opioid agonists in hippocampus enhance potassium M currents (I(M)), we tested the effect of the I(M) augmenter flupirtine. Flupirtine (20 mg/kg i.p.) prevented seizures in Borna and herpes infected rats, without signs of withdrawal, hypotonia or sedation. The results support the efficacy of opioid and nonopioid drugs in modulating naloxone-induced seizures in critical illness due to viral encephalitis and by analogy, opioid withdrawal seizures.

    Topics: Aminopyridines; Analgesics; Animals; Anticonvulsants; Borna Disease; Encephalitis, Viral; Herpes Simplex; Herpesvirus 1, Human; Male; Naloxone; Naltrexone; Narcotic Antagonists; Potassium; Rats; Rats, Inbred Lew; Receptors, Opioid, delta; Seizures; Substance Withdrawal Syndrome

2007
Pharmacological studies with a nonpeptidic, delta-opioid (-)-(1R,5R,9R)-5,9-dimethyl-2'-hydroxy-2-(6-hydroxyhexyl)-6,7-benzomorphan hydrochloride ((-)-NIH 11082).
    European journal of pharmacology, 2007, Jul-02, Volume: 566, Issue:1-3

    In the search for a selective delta-opioid receptor agonist, (-)-(1R,5R,9R)-5,9-dimethyl-2'-hydroxy-2-(6-hydroxyhexyl)-6,7-benzomorphan hydrochloride ((-)-NIH 11082) and the (+)-enantiomer were synthesized and tested. (-)-NIH 11082 displayed antinociceptive activity in the paraphenylquinone test (PPQ test) in male ICR mice [ED50=1.9 (0.7-5.3) mg/kg, s.c.] and showed little, if any, activity in the tail-flick and hot-plate assays. The (+)-enantiomer was essentially inactive indicating stereoselectivity. Opioid receptor subtype characterization studies indicated that naltrindole, a delta-opioid receptor antagonist, was potent versus the ED80 of (-)-NIH 11082 in the PPQ test [AD50=0.75 (0.26-2.20) mg/kg, s.c]. beta-Funaltrexamine and nor-binaltorphimine, selective mu- and kappa-receptor antagonists, respectively, were inactive versus the ED80 of (-)-NIH 11082. In rats with inflammation-induced pain, (-)-NIH 11082 produced antihyperalgesic effects that were attenuated by naltrindole. In morphine-dependent rhesus monkeys of both sexes, (-)-NIH 11082 neither substituted for morphine nor exacerbated withdrawal signs in the dose range of 4.0 to 32.0 mg/kg, s.c. Neither convulsions nor other overt behavioral signs were observed in any of the species tested. The results indicate that (-)-NIH 11082 has delta-opioid receptor properties.

    Topics: Analgesics, Opioid; Animals; Arthritis, Experimental; Benzomorphans; Female; Hot Temperature; Macaca mulatta; Male; Mice; Mice, Inbred ICR; Morphine Dependence; Naltrexone; Narcotic Antagonists; Pain; Rats; Rats, Inbred Lew; Receptors, Opioid, delta; Stereoisomerism; Substance Withdrawal Syndrome

2007
Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa.
    Life sciences, 2005, Nov-19, Volume: 78, Issue:1

    7-Hydroxymitragynine is a potent opioid analgesic alkaloid isolated from the Thai medicinal herb Mitragyna speciosa. In the present study, we investigated the opioid receptor subtype responsible for the analgesic effect of this compound. In addition, we tested whether development of tolerance, cross-tolerance to morphine and naloxone-induced withdrawal signs were observed in chronically 7-hydroxymitragynine-treated mice. Subcutaneous (s.c.) administration of 7-hydroxymitragynine produced a potent antinociceptive effect mainly through activation of mu-opioid receptors. Tolerance to the antinociceptive effect of 7-hydroxymitragynine developed as occurs to morphine. Cross-tolerance to morphine was evident in mice rendered tolerant to 7-hydroxymitragynine and vice versa. Naloxone-induced withdrawal signs were elicited equally in mice chronically treated with 7-hydroxymitragynine or morphine. 7-Hydroxymitragynine exhibited a potent antinociceptive effect based on activation of mu-opioid receptors and its morphine-like pharmacological character, but 7-hydroxymitragynine is structurally different from morphine. These interesting characters of 7-hydroxymitragynine promote further investigation of it as a novel lead compound for opioid studies.

    Topics: Analgesics; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Tolerance; Injections, Subcutaneous; Male; Mice; Mitragyna; Models, Molecular; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Reaction Time; Secologanin Tryptamine Alkaloids; Substance Withdrawal Syndrome; Thailand

2005
Morphine withdrawal precipitated by specific mu, delta or kappa opioid receptor antagonists: a c-Fos protein study in the rat central nervous system.
    The European journal of neuroscience, 2003, Volume: 17, Issue:11

    We have recently shown concurrent changes in behavioural responses and c-Fos protein expression in the central nervous system in both naive and morphine-dependent rats after systemic administration of the opioid antagonist naloxone. However, because naloxone acts on the three major types of opioid receptors, the present study aimed at determining, in the same animals, both changes in behaviour and c-Fos-like immunoreactivity after intravenous injection of selective opioid antagonists, such as mu (beta-funaltrexamine, 10 mg/kg), delta (naltrindole, 4 mg/kg) or kappa (nor-binaltorphimine, 5 mg/kg) opioid receptor antagonists, in naive or morphine-dependent rats. In a first experimental series, only beta-funaltrexamine increased c-Fos expression in the eight central nervous system structures examined, whereas no effect was seen after naltrindole or nor-binaltorphimine administration in naive rats. These results suggest a tonic activity in the endogenous opioid peptides acting on mu opioid receptors in normal rats. A second experimental series in morphine-dependent rats showed that beta-funaltrexamine had the highest potency in the induction of classical signs of morphine withdrawal syndrome, as well as the increase in c-Fos expression in the 22 central nervous system structures studied, suggesting a major role of mu opioid receptors in opioid dependence. However, our results also demonstrated that naltrindole and, to a lesser extent, nor-binaltorphimine were able to induce moderate signs of morphine withdrawal and relatively weak c-Fos protein expression in restricted central nervous system structures. Therefore, delta and kappa opioid receptors may also contribute slightly to opioid dependence.

    Topics: Animals; Behavior, Animal; Cell Count; Central Nervous System; Gene Expression Regulation; Immunohistochemistry; Male; Morphine; Morphine Dependence; Naltrexone; Narcotic Antagonists; Narcotics; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome

2003
Synthesis and in vitro and in vivo activity of (-)-(1R,5R,9R)- and (+)-(1S,5S,9S)-N-alkenyl-, -N-alkynyl-, and -N-cyanoalkyl-5, 9-dimethyl-2'-hydroxy-6,7-benzomorphan homologues.
    Journal of medicinal chemistry, 2000, Dec-28, Volume: 43, Issue:26

    Two of the synthesized (-)-(1R,5R,9R)-N-homologues (N-but-3-enyl- and N-but-3-ynyl-5,9-dimethyl-2'-hydroxy-6,7-benzomorphan (9, 13)) were found to be about 20 times more potent than morphine in the mouse tail-flick assay (ED(50) = 0.05 mg/kg), and (-)-(1R,5R, 9R)-N-but-2-ynyl-5,9-dimethyl-2'-hydroxy-6,7-benzomorphan ((-)-(1R, 5R,9R)-N-but-2-ynylnormetazocine, 12) was about as potent as the opioid antagonist N-allylnormetazocine (AD(50) in the tail-flick vs morphine assay = 0.3 mg/kg). All of the homologues examined had higher affinity for the kappa-opioid receptor than the mu-receptor except (-)-N-but-2-ynyl-normetazocine (12), which had a kappa/mu ratio = 7.8 and a delta/mu ratio = 118. The (-)-N-2-cyanoethyl (3), -allyl (8), and -but-3-ynyl (13) analogues had good affinity (<10 nM) for delta-opioid receptors. Two homologues in the (+)-(1S,5S,9S)-normetazocine series, N-pent-4-enyl (24) and N-hex-5-enyl (25), were high-affinity and selective sigma(1)-ligands (K(i) = 2 nM, sigma(2)/sigma(1) = 1250, and 1 nM, sigma(2)/sigma(1) = 750, respectively); in contrast, N-allylnormetazocine (22) had relatively poor affinity at sigma(1), and its sigma(1)/sigma(2) ratio was <100.

    Topics: Analgesics; Animals; Benzomorphans; Binding, Competitive; Cerebral Cortex; Ligands; Macaca mulatta; Mice; Morphine; Morphine Dependence; Narcotic Antagonists; Pain Measurement; Radioligand Assay; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Stereoisomerism; Structure-Activity Relationship; Substance Withdrawal Syndrome

2000
The role of opioid receptors in morphine withdrawal in the infant rat.
    Brain research. Developmental brain research, 2000, Nov-30, Volume: 124, Issue:1-2

    Exposure to opiates such as morphine can lead to psychological and physical dependence in both adult and infant humans. Infant rats experience opiate withdrawal behaviors that are qualitatively different from the withdrawal behaviors displayed by adult rats. In the adult, withdrawal is largely mediated by the mu-opioid receptor. We sought to understand more about what role each opioid receptor (mu, kappa, and delta) plays in the display of the physical withdrawal in the infant rat. Beginning on postnatal day 1, infant rats were injected with morphine sulfate twice a day for 6.5 days. On the afternoon of the seventh day the infant rats were given an i.c. injection of a vehicle, the mu-opioid receptor antagonist CTOP, the kappa-opioid receptor antagonist nor-BNI, or the delta-opioid receptor antagonist naltrindole. CTOP precipitated withdrawal behaviors in the 7-day-old rat in a dose-dependent manner. Neither nor-BNI nor naltrindole induced any significant changes in the frequency of the withdrawal behaviors. These data suggest that in the infant rat control of certain behavioral withdrawal signs is modulated primarily by the mu-opioid receptor, as is the case in the adult rat.

    Topics: Animals; Animals, Newborn; Morphine; Naltrexone; Narcotic Antagonists; Rats; Rats, Long-Evans; Receptors, Opioid; Receptors, Opioid, mu; Somatostatin; Substance Withdrawal Syndrome

2000
Role of delta-opioid receptors in mediating the aversive stimulus effects of morphine withdrawal in the rat.
    European journal of pharmacology, 1996, Apr-04, Volume: 300, Issue:1-2

    An unbiased place preference conditioning procedure was used to examine the role of delta-opioid receptors in mediating the aversive effects of opioid withdrawal. Rats were implanted s.c. with two pellets each containing placebo or 75 mg morphine. Single-trial conditioning sessions with saline and the opioid receptor antagonists naloxone (0.001-1.0 mg/kg, s.c.), naltrindole (0.01-3.0 mg/kg, s.c.) or naltriben (0.01-3.0 mg/kg, s.c.) commenced 4 days later. During these conditioning sessions, physical signs of withdrawal were also quantified. Tests of conditioning were conducted on day 5. Naloxone in doses of 0.01-1.0 mg/kg produced significant conditioned place aversions in morphine-implanted animals. A dose of 0.01 mg/kg produced few physical withdrawal signs whereas higher doses resulted in marked wet dog shakes, body weight loss ptosis and diarrhea. No such effects were observed in control (placebo-implanted) animals. Administration of the selective delta-opioid receptor antagonists naltrindole and naltriben produced dose-related place aversions in morphine-implanted animals. The magnitude of these effects did not differ from that observed with naloxone. The minimum effective doses of naltrindole and naltriben were 0.1 mg/kg. Doses of 0.1-1.0 mg/kg produced few, if any, somatic signs of withdrawal whereas higher doses of these antagonists only produced diarrhea and wet-dog shakes. Other withdrawal signs were absent. In contrast to the opioid receptor antagonists tested, the dopamine D1 receptor antagonist SCH23390 failed to produced conditioned place aversions or physical signs of withdrawal in morphine-pelleted animals. These data demonstrate that the selective blockade of either delta- or mu-opioid receptors is sufficient to induce conditioned aversive effects in morphine-dependent animals. They also indicate that physical symptoms associated with precipitated morphine withdrawal differ depending upon the opioid receptor antagonist employed.

    Topics: Animals; Dose-Response Relationship, Drug; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Substance Withdrawal Syndrome

1996
Mu- and delta-opioid receptor antagonists precipitate similar withdrawal phenomena in butorphanol and morphine dependence.
    Neurochemical research, 1996, Volume: 21, Issue:1

    The relative involvement of mu- and delta-opioid receptors in the mediation of butorphanol-, as compared to morphine-, dependence was examined with the use of highly selective antagonists at mu- and delta-opioid receptors. Extracellular fluid levels of glutamate (Glu) and aspartate (Asp) were measured within the pontine locus coeruleus following precipitation of withdrawal from dependence on either butorphanol or morphine in conscious Sprague-Dawley rats. Dependence was induced by intracerebroventricular (i.c.v.) infusion of butorphanol (26 nmol/mu l/h), morphine (26 nmol/mu l/h) or saline vehicle (1 mu l/h) for 3 days by means of an osmotic minipump. Microdialysis probes (2 mm tip) were inserted into the locus coeruleus 24 h before precipitation of withdrawal by i.c.v. injection of either the mu-opioid receptor antagonist, D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; 48 nmol/5 mu l or 48 nmol/5 mu l), or the delta-opioid receptor antagonist, naltrindole (17-cyclopropy;methyl-6,7-dehydro-4,5-epoxy-3, 14-dihydroxy-6,7,2'3'-indolmorphinan hydrochloride; 48 nmol/5 mu l or 100 nmol/5 mu l). Baseline levels of Glu ranged from 9.59 + or - 1.27 to 12.84 + or - 3.01 mu M in the various treatment groups. Levels of Asp were similar. Precipitation of withdrawal by CTOP elicited significant increases of Glu and Asp in both morphine- and butorphanol-dependent rats. Maximal increases in Glu of 425% and 258% above baseline levels were elicited in the first 15 min microdialysis sample following i.c.v. injection of CTOP in morphine- and butorphanol-dependent rats, respectively. Behavioral signs of withdrawal were greater in morphine than butorphanol-dependent groups. The i.c.v. treatment with naltrindole elicited increases in Glu and Asp that were similar, although less marked, than those precipitated by CTOP treatment. Administration of naltrindole produced equivalent signs of withdrawal in both morphine- and butorphanol-dependent rats. Withdrawal from dependence on both morphine and butorphanol is characterized by elevations in coerulear levels of excitatory amino acids. Responses elicited following the use of selective mu- and delta-opioid receptor antagonists to precipitate withdrawal suggest that the role played by these receptors in mediation of the signs and symptoms of withdrawal do not differ greatly between butorphanol- and morphine-dependent rats.

    Topics: Animals; Butorphanol; Drug Evaluation, Preclinical; Injections, Intraventricular; Locus Coeruleus; Male; Morphine; Morphine Dependence; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Somatostatin; Substance Withdrawal Syndrome

1996
Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi].
    European journal of pharmacology, 1995, Nov-03, Volume: 286, Issue:1

    We examined the effects of i.c.v. treatment with naltrindole, and the two highly selective peptide delta-opioid receptor antagonists H-Tyr-Tic-Phe-Phe-OH (TIPP) and H-Tyr-Tic psi [CH2-NH]-Phe-Phe- OH (TIPP[psi]), on the development of morphine tolerance and dependence. Each treatment significantly decreased naloxone-precipitated withdrawal, with TIPP[psi] reducing the most symptoms. TIPP[psi], but neither naltrindole nor TIPP, attenuated the development of analgesic tolerance in the tail-flick test. These results suggest that delta-opioid receptors are critically involved in the development of morphine tolerance and dependence.

    Topics: Animals; Behavior, Animal; Morphine Dependence; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Rats; Receptors, Opioid, delta; Substance Withdrawal Syndrome; Tetrahydroisoquinolines

1995
Opioid antagonists and butorphanol dependence.
    Pharmacology, biochemistry, and behavior, 1993, Volume: 44, Issue:3

    Butorphanol has been known to act on mu-, delta-, and kappa-opioid receptors, mu- and possibly delta-receptors are thought to mediate morphine dependence. Relative to morphine, butorphanol has a higher affinity for mu- and delta-receptors. In the present study, beta-funaltrexamine (beta-FNA) and naltrindole (NTI) (nonequilibrium mu- and delta-antagonist, respectively) were used to precipitate withdrawal in butorphanol-dependent rats. It was found that beta-FNA (12, 24, 48, and 100 nM) did not elicit significant withdrawal behaviors, while NTI caused teeth-chattering (100 nM), wet shakes (100 nM), forepaw tremors (24 nM), yawning (48 and 100 nM), ejaculation (24 nM), and urination (100 nM). The present results indicate that delta-opioid receptors may be involved in mediating butorphanol dependence, while the involvement of mu-opioid receptors needs to be further investigated.

    Topics: Animals; Behavior, Animal; Butorphanol; Indoles; Injections, Intraventricular; Male; Morphinans; Naltrexone; Narcotic Antagonists; Opioid-Related Disorders; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Substance Withdrawal Syndrome

1993
"Paradoxical" analgesia and aggravated morphine dependence induced by opioid antagonists.
    Life sciences, 1990, Volume: 47, Issue:6

    Chronic treatment with naloxone (Nx) or naltrexone (Ntx) induces paradoxical analgesia. In the present study, the effects of chronic treatment with opioid receptor antagonists, such as nor-binaltorphimine (nor-BNI) for kappa and naltrindole (NTI) for delta receptors, on analgesic response using the hot plate test and on morphine physical dependence in rats were examined. The hot plate latency was significantly increased by pretreatment with Nx (5 mg/kg, s.c.), nor-BNI (20 mg/kg, i.p.) or NTI (20 mg/kg, i.p.) for 5 days. After chronic pretreatment with these antagonists, the rats were treated with morphine-admixed food (0.5 mg/g of food) for 3 days. Chronic pretreatment with Nx and NTI significantly increased Nx precipitated body weight loss in morphine dependent rats, while chronic pretreatment with nor-BNI produced small increase. These results indicate that chronic treatment with nor-BNI or NTI as well as with Nx induces obviously paradoxical analgesia, and that chronic blockade of mu or delta may enhance the development of physical dependence on morphine.

    Topics: Animals; Body Weight; Indoles; Male; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Rats; Rats, Inbred Strains; Substance Withdrawal Syndrome; Substance-Related Disorders

1990