naltrindole and Disease-Models--Animal

naltrindole has been researched along with Disease-Models--Animal* in 36 studies

Other Studies

36 other study(ies) available for naltrindole and Disease-Models--Animal

ArticleYear
Morphine attenuates neuroinflammation and blood-brain barrier disruption following traumatic brain injury through the opioidergic system.
    Brain research bulletin, 2021, Volume: 176

    Endogenous opiates are suggested to have a role in the pathophysiology of traumatic brain injury (TBI). Furthermore, administration of opioidergic agents in TBI injured animals have been shown to affect the brain injury and provide neuroprotection post-TBI. This study aims to investigate the potential neuroprotective effects of morphine through inhibition of neuroinflammatory pathways in acute severe TBI. Male Wistar rats were divided into seven groups (24 rats per group): Sham, Vehicle (TBI + intraperitoneal (i.p) injection of normal saline), TBI + i.p injection of morphine in 1, 5 and 10 mg/kg doses (MOR 1, MOR 5 and MOR 10 groups), TBI + morphine (5 mg/kg i.p) + Naloxone (NAL + MOR), and TBI + morphine (5 mg/kg i.p) + Naltrindole (NALT + MOR). A severe diffuse TBI model (weight dropping Marmarou model) was used to induce TBI in rats. The veterinary coma scale (VCS), beam-walk, and beam-balance tasks were used to assess short-term neurological deficits. Histolopathological changes of brain tissue was evaluated using light microscopy and hematoxilin and eosin staining. Blood-Brain barrier (BBB) disruption was evaluated by the Evans Blue method 6 h post-injury. Brain water content and cerebrospinal fluid (CSF) content of IL-1β and IL-10 were assessed by the wet-dry method and enzyme-linked immunosorbent assay (ELISA), respectively. Morphine (1 and 5 mg/kg doses) attenuated BBB leakage, improved VCS score, pathological changes of brain tissue, and vestibulomotor function compared to the vehicle group (p < 0.0001). Only 5 mg/kg morphine attenuated brain edema (p < 0.0001). Furthermore, 1 and 5 mg/kg morphine significantly changed CSF concentration of IL-1β and IL-10 compared to the vehicle group (p < 0.0001). Inhibition of opioid receptors by naloxone and naltrindole abolished morphine neuroprotective effects (p < 0.0001 vs. MOR 5 group). This study suggests that morphine administration inhibits TBI-mediated neuroinflammation via opioid receptors and improves neurobehavioral function following TBI, which provides a potential therapeutic opportunity in the treatment of traumatic brain injury.

    Topics: Analgesics, Opioid; Animals; Blood-Brain Barrier; Brain; Brain Injuries, Traumatic; Disease Models, Animal; Male; Morphine; Naltrexone; Neuroinflammatory Diseases; Neuroprotective Agents; Rats; Rats, Wistar

2021
The possible role of nitric oxide in anti-convulsant effects of Naltrindole in seizure-induced by social isolation stress in male mice.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2020, Volume: 129

    Social isolation stress (SIS) as a chronic model of early-life stress could induce proconvulsant effects in mice. In the current study, we evaluated the role of opioid receptors (OPRs) agonists and antagonists in pro-conversant effects of SIS and the common pathway between delta-opioid receptors (DORs) and nitric oxide (NO) in stress-induced seizure. For reaching to this goal, we used pentylenetetrazol (PTZ) model of clonic-seizure to measure seizure threshold and administrated selective and non-selective OPRs agonists and antagonists in both social condition (SC) and isolated condition (IC) animals. In the next step, we administrated sub effective dose of naltrindole (NLT, 0.3 mg/kg) with sub-effective doses of nitric oxide synthesis (NOS) inhibitors including L-NAME (10 mg/kg), aminoguanidine (50 mg/kg) and 7-NI (15 mg/kg). Also, we co-administrated sub-effective dose of SNC80 (0.5 mg/kg) with sub-effective dose of l-arg (25 mg/kg) to assess the seizure threshold. In addition, we measured nitrite levels of hippocampus following administration of mentioned drugs in both SC and IC mice. Our findings showed that L-NAME and 7-NI (but not AG) increased anti-convulsant activity of NLT and l-arg increased proconvulsant effects of SNC80 in IC animals. Nitrite assay showed that co-administration of NLT plus sub-effective doses of L-NAME and 7-NI (but not AG) decreased and co-administration of SNC80 with sub-effective dose of l-arg increased nitrite levels of hippocampus in IC mice. This study suggests the role of n-NOS in anti-convulsant effects of NLT and pro-convulsant effects of SNC80 in stress-induced seizure.

    Topics: Animals; Anticonvulsants; Disease Models, Animal; Hippocampus; Male; Mice; Naltrexone; Narcotic Antagonists; Nitric Oxide; Nitric Oxide Synthase Type I; Pentylenetetrazole; Receptors, Opioid, delta; Seizures; Signal Transduction; Social Isolation; Stress, Psychological

2020
The blockade of kappa opioid receptors exacerbates alveolar bone resorption in rats.
    Archives of oral biology, 2020, Volume: 120

    Bone resorption associated to chronic diseases, such as arthritis and periodontitis, results from exacerbated immuno-inflammatory host response that leads to tissue breakdown. The significance of opioid pathways as endogenous modulators of inflammatory events has already been described. Thus, the aim of this work is to determine whether some of the main three opioid receptors are endogenously activated to prevent bone loss during experimentally-induced alveolar bone resorption.. This study used an experimental model of alveolar bone resorption induced by ligature in rats. A silk thread was placed around the 2nd maxillary molar of male Wistar rats. In the 3rd, 4th and 5th day after ligation the rats received a local injection of different concentrations of opioid antagonists Cyprodime, Naltrindole, or Nor-binaltorphimine, which specifically block mü, delta and kappa opioid receptors, respectively. In the 7th experimental day, rats were euthanized and their maxillae collected for evaluation of alveolar bone and fiber attachment loss, morphometric counting of osteoclasts and osteoblasts, as well as the levels of cytokines IL-1β, IFN-γ, and IL-6 by ELISA.. Selective antagonism of kappa opioid receptors, but not mü and delta, exacerbated alveolar bone resorption induced by ligature in rats. The increased bone loss associated with higher number of osteoclasts surrounding alveolar bone, although osteoblasts' counting remained unchanged. The concentrations of IL-1β and IL-6 in periodontal tissues were also significantly higher in the rats treated with the kappa antagonist.. Inhibiting kappa opioid receptors exacerbates alveolar bone resorption.

    Topics: Alveolar Bone Loss; Animals; Bone Resorption; Cytokines; Disease Models, Animal; Male; Morphinans; Naltrexone; Narcotic Antagonists; Osteoblasts; Osteoclasts; Periodontitis; Rats; Rats, Wistar; Receptors, Opioid

2020
Serotonin induces peripheral antinociception via the opioidergic system.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2018, Volume: 97

    Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined.. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng).. These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes.

    Topics: Analgesics; Animals; Cinnamates; Dinoprostone; Disease Models, Animal; Male; Mice; Morphine Derivatives; Naltrexone; Narcotic Antagonists; Opioid Peptides; Pain; Receptors, Opioid; Serotonin

2018
Cellular localization and adaptive changes of the cardiac delta opioid receptor system in an experimental model of heart failure in rats.
    Heart and vessels, 2016, Volume: 31, Issue:2

    The role of the cardiac opioid system in congestive heart failure (CHF) is not fully understood. Therefore, this project investigated the cellular localization of delta opioid receptors (DOR) in left ventricle (LV) myocardium and adaptive changes in DOR and its endogenous ligand, the precursor peptide proenkephalin (PENK), during CHF. Following IRB approval, DOR localization was determined by radioligand binding using [H(3)]Naltrindole and by double immunofluorescence confocal analysis in the LV of male Wistar rats. Additionally, 28 days following an infrarenal aortocaval fistula (ACF) the extent of CHF and adaptions in left ventricular DOR and PENK expression were examined by hemodynamic measurements, RT-PCR, and Western blot. DOR specific membrane binding sites were identified in LV myocardium. DOR were colocalized with L-type Ca(2+)-channels (Cav1.2) as well as with intracellular ryanodine receptors (RyR) of the sarcoplasmatic reticulum. Following ACF severe congestive heart failure developed in all rats and was accompanied by up-regulation of DOR and PENK on mRNA as well as receptor proteins representing consecutive adaptations. These findings might suggest that the cardiac delta opioid system possesses the ability to play a regulatory role in the cardiomyocyte calcium homeostasis, especially in response to heart failure.

    Topics: Adaptation, Physiological; Animals; Binding, Competitive; Calcium Channels, L-Type; Disease Models, Animal; Enkephalins; Heart Failure; Ligands; Male; Myocardium; Naltrexone; Protein Binding; Protein Precursors; Radioligand Assay; Rats, Wistar; Receptors, Opioid, delta; Ryanodine Receptor Calcium Release Channel; Stroke Volume; Ventricular Function, Left

2016
Unique action mechanisms of tramadol in global cerebral ischemia-induced mechanical allodynia.
    Neuroreport, 2016, 06-15, Volume: 27, Issue:9

    Central poststroke pain is associated with specific somatosensory abnormalities, such as neuropathic pain syndrome. Although central poststroke pain is a serious condition, details pertaining to underlying mechanisms are not well established, making current standard treatments only partially effective. Here, we assessed the effects of tramadol, an analgesic drug mediated by opioid receptors, using a mouse model of global cerebral ischemia. Ischemia was induced by bilateral carotid artery occlusion (30 min) in male ddY mice. Development of hind-paw mechanical allodynia was measured 3 days after bilateral carotid artery occlusion using the von Frey test. Mechanical allodynia was significantly and dose dependently suppressed by intraperitoneal tramadol (10 or 20 mg/kg). These effects, which peaked at 10 min and continued for at least 60 min, were inhibited by naloxone (nonselective opioid receptor antagonist, 1 mg/kg, intraperitoneal). Tramadol antinociception was significantly negated by β-funaltrexamine (selective μ-opioid receptor antagonist, 20 mg/kg, intraperitoneal), but not naltrindole (selective δ-opioid receptor antagonist, 5 mg/kg, intraperitoneal) or nor-binaltorphimine (selective κ-opioid receptor antagonist, 10 mg/kg, intraperitoneal) after 5 min, by β-funaltrexamine and nor-binaltorphimine but not naltrindole after 10 min, and by all selective opioid receptor antagonists at 15 and 30 min after tramadol treatment. These results suggested that antinociception induced by tramadol through various opioid receptors was time dependent. Furthermore, it is possible that the opioid receptors involved in tramadol-induced antinociception change over time with the metabolism of this drug.

    Topics: Analgesics, Opioid; Animals; Brain Ischemia; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Male; Mice; Naltrexone; Narcotic Antagonists; Pain Measurement; Pain Threshold; Tramadol

2016
Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro.
    Brain research bulletin, 2015, Volume: 110

    Several studies have demonstrated that intraoperative remifentanil infusions have been associated with opioid-induced hyperalgesia (OIH). Activation of delta opioid receptor (DOR) and augmentation of N-methyl-d-aspartate (NMDA) receptor expression and function may play an important role in the development of OIH. The aim of this study was to investigate whether DOR inhibition could prevent remifentanil-induced hyperalgesia via regulating spinal NMDA receptor expression and function in vivo and in vitro.. A rat model of remifentanil-induced postoperative hyperalgesia was performed with the DOR agonist deltorphin-deltorphin II or the DOR antagonist naltrindole injected intrathecally 10 min before remifentanil infusion. Mechanical and thermal hyperalgesia were measured at -24h, 2, 6, 24 and 48 h after remifentanil infusion. Western blot was applied to detect the membrane and total expression of DOR and NMDA receptor subunits (NR1, NR2A and NR2B) in spinal cord L4-L6 segments. In addition, whole-cell patch-clamp recording was used to investigate the effect of DOR inhibition on NMDA receptor-induced current in spinal cord slices in vitro.. We found that membrane trafficking of DOR, NR1 and NR2B subunits in the spinal cord increased after remifentanil administration and surgery. The DOR antagonist naltrindole could attenuate mechanical and thermal hyperalgesia without affecting baseline nociceptive threshold, reduce membrane expression of DOR and decrease the membrane and total expressions of NR1 and NR2B subunits. Furthermore, the amplitude and the frequency of NMDA receptor-induced current were significantly increased by remifentanil incubation in neurons of the dorsal horn, which was reversed by the application of naltrindole.. The above results indicate that inhibition of DOR could significantly inhibit remifentanil-induced hyperalgesia via modulating the total protein level, membrane trafficking and function of NMDA receptors in the dorsal horn of spinal cord, suggesting that naltrindole could be a potential anti-hyperalgesic agent for treating OIH.

    Topics: Anesthetics, Intravenous; Animals; Disease Models, Animal; Hot Temperature; Hyperalgesia; Lumbar Vertebrae; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Threshold; Pain, Postoperative; Piperidines; Posterior Horn Cells; Random Allocation; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, delta; Remifentanil; Spinal Cord; Tissue Culture Techniques; Touch

2015
Implication of delta opioid receptor subtype 2 but not delta opioid receptor subtype 1 in the development of morphine analgesic tolerance in a rat model of chronic inflammatory pain.
    The European journal of neuroscience, 2015, Volume: 41, Issue:7

    Opioids are well known for their robust analgesic effects. Chronic activation of mu opioid receptors (MOPs) is, however, accompanied by various unwanted effects such as analgesic tolerance. Among other mechanisms, interactions between MOPs and delta opioid receptors (DOPs) are thought to play an important role in morphine-induced behavioral adaptations. Interestingly, certain conditions such as inflammation enhance the function of the DOP through a MOP-dependent mechanism. Here, we investigated the role of DOPs during the development of morphine tolerance in an animal model of chronic inflammatory pain. Using behavioral approaches, we first established that repeated systemic morphine treatment induced morphine analgesic tolerance in rats coping with chronic inflammatory pain. We then observed that blockade of DOPs with subcutaneous naltrindole (NTI), a selective DOP antagonist, significantly attenuated the development of morphine tolerance in a dose-dependent manner. We confirmed that this effect was DOP mediated by showing that an acute injection of NTI had no effect on morphine-induced analgesia in naive animals. Previous pharmacological characterizations revealed the existence of DOP subtype 1 and DOP subtype 2. As opposed to NTI, 7-benzylidenenaltrexone and naltriben were reported to be selective DOP subtype 1 and DOP subtype 2 antagonists, respectively. Interestingly, naltriben but not 7-benzylidenenaltrexone was able to attenuate the development of morphine analgesic tolerance in inflamed rats. Altogether, our results suggest that targeting of DOP subtype 2 with antagonists provides a valuable strategy to attenuate the analgesic tolerance that develops after repeated morphine administration in the setting of chronic inflammatory pain.

    Topics: Analgesics, Opioid; Animals; Benzylidene Compounds; Chronic Pain; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Tolerance; Freund's Adjuvant; Hindlimb; Inflammation; Male; Morphine; Naltrexone; Narcotic Antagonists; Rats, Sprague-Dawley; Receptors, Opioid, delta

2015
Delta opioid receptor agonist BW373U86 attenuates post-resuscitation brain injury in a rat model of asphyxial cardiac arrest.
    Resuscitation, 2014, Volume: 85, Issue:2

    The aim of this study was to investigate whether the DOR agonist BW373U86 conferred neuroprotection following ACA when given after resuscitation and to determine the long-term effects of chronic BW373U86 treatment on ACA-elicited brain injury.. Animals were divided into acute and chronic treatment groups. Each group consisted of four sub-groups, including Sham, ACA, BW373U86 (BW373U86+ACA), and Naltrindole groups (Naltrindole and BW373U86+ACA). The DOR antagonist Naltrindole was used to confirm the possible receptor-dependent effects of BW373U86. ACA was induced by 8min of asphyxiation followed by resuscitation. All drugs were administered either immediately after the restoration of spontaneous circulation (ROSC) in acute-treatment groups or over 6 consecutive days in chronic-treatment groups. Alterations of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were analyzed by western blot and immunohistochemistry. Neurological functions were assessed by neurological deficit score (NDS) and Morris Water Maze performance. Neurodegeneration was monitored by immunofluorescence and Nissl staining.. ACA induced massive neuron loss and serious neurological function deficits. BW373U86 significantly reduced both of these negative effects and increased CREB and pCREB expression in the hippocampus; these effects were reversed with acute Naltrindole treatment. The protective effects of BW373U86 persisted until 28d post-ROSC with chronic treatment, but these effects were not reversed by Naltrindole.. BW373U86 attenuates global cerebral ischemic injury induced by ACA through both DOR-dependent and DOR-independent mechanisms. CREB might be an important molecule in mediating these neuroprotective effects.

    Topics: Animals; Asphyxia; Benzamides; Blotting, Western; Brain Damage, Chronic; Cardiopulmonary Resuscitation; CREB-Binding Protein; Disease Models, Animal; Heart Arrest; Immunoenzyme Techniques; Male; Naltrexone; Neuroprotective Agents; Piperazines; Rats, Sprague-Dawley

2014
Delta opioid receptors: the link between exercise and cardioprotection.
    PloS one, 2014, Volume: 9, Issue:11

    This study investigated the role of opioid receptor (OR) subtypes as a mechanism by which endurance exercise promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury. Wistar rats were randomly divided into one of seven experimental groups: 1) control; 2) exercise-trained; 3) exercise-trained plus a non-selective OR antagonist; 4) control sham; 5) exercise-trained plus a kappa OR antagonist; 6) exercise-trained plus a delta OR antagonist; and 7) exercise-trained plus a mu OR antagonist. The exercised animals underwent 4 consecutive days of treadmill training (60 min/day at ∼70% of maximal oxygen consumption). All groups except the sham group were exposed to an in vivo myocardial IR insult, and the myocardial infarct size (IS) was determined histologically. Myocardial capillary density, OR subtype expression, heat shock protein 72 (HSP72) expression, and antioxidant enzyme activity were measured in the hearts of both the exercised and control groups. Exercise training significantly reduced the myocardial IS by approximately 34%. Pharmacological blockade of the kappa or mu OR subtypes did not blunt exercise-induced cardioprotection against IR-mediated infarction, whereas treatment of animals with a non-selective OR antagonist or a delta OR antagonist abolished exercise-induced cardioprotection. Exercise training enhanced the activities of myocardial superoxide dismutase (SOD) and catalase but did not increase the left ventricular capillary density or the mRNA levels of HSP72, SOD, and catalase. In addition, exercise significantly reduced the protein expression of kappa and delta ORs in the heart by 44% and 37%, respectively. Together, these results indicate that ORs contribute to the cardioprotection conferred by endurance exercise, with the delta OR subtype playing a key role in this response.

    Topics: Animals; Cardiotonic Agents; Disease Models, Animal; Exercise Test; Heart; HSP72 Heat-Shock Proteins; Male; Myocardial Reperfusion Injury; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, delta

2014
Long-term antinociception by electroacupuncture is mediated via peripheral opioid receptors in free-moving rats with inflammatory hyperalgesia.
    European journal of pain (London, England), 2013, Volume: 17, Issue:10

    Electroacupuncture (EA) has been widely accepted and applied as an important acupuncture-related technique for acupuncture analgesia (AA) research. The involvement of opioid peptides and receptors in acute AA has been shown via pre-EA application of opioid receptor/peptide antagonists. In this study, we intended to reproducibly institute acupoint position and needling excluding influences from anaesthesia or restrainers on rats with complete Freund's adjuvant (CFA) hind paw inflammatory pain, as well as to explore opioid-dependency and anti-inflammatory effects in sustained acupuncture analgesia.. Accurate position and needling approach on acupoint GB30 was modelled by computer-based three-dimensional (3D) images and followed by an optimal EA treatment protocol (100 Hz, 2-3 mA, 20 min) at 0 and 24 h post-CFA in conscious free-moving rats. Opioid receptor antagonists, naloxone (NLX) and naltrindole (NTI) were applied intraplantarly post-EA at late phase (96 h) of CFA. Nociceptive thresholds were assessed by paw pressure threshold (Randall-Sellito) or paw withdrawal latency (Hargreaves), and anti-inflammatory effects were evaluated by measurement of plantar temperature and paw volume.. EA elicited significant sustained mechanical and thermal antinociception up to 144 h. Mechanical antinociception of EA was suppressed by peripheral intraplantar application of NLX and NTI. EA also reduced paw temperature and volume during the same time frame indicating anti-inflammatory effects.. By employing a reproducible EA treatment model on GB30 in free-moving rats, we demonstrated the involvement of peripheral opioid receptors mediated EA-induced long-term antinociception. Future studies should examine the specific neuroimmunological connection of EA-induced sustained antinociception in inflammation.

    Topics: Acupuncture Analgesia; Acupuncture Points; Animals; Disease Models, Animal; Electroacupuncture; Freund's Adjuvant; Hyperalgesia; Inflammation; Male; Naloxone; Naltrexone; Pain Measurement; Rats; Rats, Wistar; Receptors, Opioid; Time

2013
Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain.
    Life sciences, 2013, Dec-18, Volume: 93, Issue:25-26

    Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids have highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors.. Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors.. Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats.. RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment.. This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists.

    Topics: Acute Pain; Analgesics, Opioid; Animals; Anti-Inflammatory Agents, Non-Steroidal; Chronic Pain; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Enkephalins; Fentanyl; Male; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu

2013
Sensitivity to μ-opioid receptor-mediated anti-nociception is determined by cross-regulation between μ- and δ-opioid receptors at supraspinal level.
    British journal of pharmacology, 2012, Volume: 166, Issue:1

    The perception of pain and its inhibition varies considerably between individuals, and this variability is still unexplained. The aim of the present study is to determine whether functional interactions between opioid receptors are involved in the inter-individual variability in the sensitivity to μ-opioid receptor agonists.. Anti-nociceptive tests, radioligand binding, stimulation of [(35) S]GTP-γ-S binding, inhibition of cAMP production and co-immunoprecipitation experiments were performed in two strains of rat (Sprague-Dawley bred at our university - SDU - and Wistar) that differ in their sensitivity to opioids.. The increased anti-nociceptive potency of µ-opioid receptor agonists in SDU rats was reversed by the δ-opioid receptor antagonist, naltrindole. Inhibition of the binding of [(3) H] naltrindole by µ-opioid receptor agonists was different in brain membranes from SDU and Wistar rats. Differences were also evident in the effect of δ-opioid receptor ligands on the binding of [(35) S]GTP-γ-S stimulated by µ-opioid receptors agonists. No strain-related differences were detected in spinal cord membranes. The potency of morphine to inhibit cAMP production in brain membranes varied between the strains, in the presence of deltorphin II and naltrindole. Co-immunoprecipitation experiments demonstrated that δ-opioid receptors were associated with μ-opioid receptors to a higher extent in brain synaptosomal fractions from SDU than in those from Wistar rats.. There was increased supraspinal cross-talk between μ and δ-opioid receptors in SDU, as compared with Wistar rats. This was related to an enhanced sensitivity to anti-nociception induced by µ-opioid receptor agonists.

    Topics: Analgesics, Opioid; Animals; Brain; Cyclic AMP; Disease Models, Animal; Guanosine 5'-O-(3-Thiotriphosphate); Immunoprecipitation; Male; Naltrexone; Narcotic Antagonists; Pain; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptor Cross-Talk; Receptors, Opioid, delta; Receptors, Opioid, mu; Species Specificity; Spinal Cord

2012
Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer's disease mouse model.
    Journal of Alzheimer's disease : JAD, 2012, Volume: 31, Issue:4

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the AβPP/PS1 transgenic mouse model is a commonly used experimental model to mimic the pathological and cognitive impairments in AD. As a classic method to evaluate spatial learning and memory, the Morris water maze is widely applied to study the cognitive deficits in rodent AD models. However, the assay procedure is relatively complicated and requires a properly equipped environment. The novel object recognition test is a relatively simple and straightforward method to test working memory in rodents. However, whether the latter can be used as a common tool for evaluating the therapeutic effects of drugs in the AβPP/PS1 transgenic AD mouse model remains unclear. In the present study, we assessed the cognitive impairment of AβPP/PS1 AD mice with the novel object recognition test. In parallel, Morris water maze was performed and compared with the novel object recognition study. Both assays worked equally well in evaluating the cognitive defect of AβPP/PS1 mice. Furthermore, we drew similar conclusions from the novel object recognition assay as from the Morris water maze in assessing the therapeutic effects of two previously reported compounds, donepezil and naltrindole, on AD. We found the novel object recognition to be a facile assay with almost no stress to mice and think it could be used as an ideal primary screening assay to evaluate drug effects on AβPP/PS1 AD model.

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Disease Models, Animal; Donepezil; Drug Evaluation, Preclinical; Female; Humans; Indans; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Naltrexone; Pattern Recognition, Visual; Piperidines; Presenilin-1; Random Allocation

2012
Synergism between dexketoprofen and meloxicam in an orofacial formalin test was not modified by opioid antagonists.
    Pharmacological reports : PR, 2011, Volume: 63, Issue:2

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the management of acute and chronic pain. The role of the opioid system in the synergism between NSAIDs is not well characterized. Mice were injected with a 5% formalin solution (20 μl) into the upper right lip to perform an orofacial formalin test. The isobolographic method was used to determine the interaction between dexketoprofen, which is the (S)-(+) enantiomer of ketoprofen, and meloxicam co-administration. Additionally, the non-selective, opioid antagonist naltrexone, the selective δ opioid receptor (DOP) antagonist naltrindole and the selective κ opioid receptor (KOP) antagonist norbinaltorphimine were used to assess the opioid effects on this interaction. Intraperitoneal administration of dexketoprofen or meloxicam induced dose-dependent antinociception with different phase I and phase II potencies in the orofacial formalin test. Meloxicam displayed similar potencies (ED(50)) in phase I (7.20 mg/kg) and phase II (8.60 mg/kg). Dexketoprofen was more potent in phase I (19.96 mg/kg) than in phase II (50.90 mg/kg). The interactions between dexketoprofen and meloxicam were synergistic in both phases. This was determined based on the fixed ratios (1:1) of their ED(50) values, which were determined by isobolographic analysis. Furthermore, this antinociceptive activity does not seem to be modulated by opioid receptor blockers because they did not induce changes in the nature of this interaction. This finding may be relevant with regards to NSAID multi-modal analgesia where an opioid antagonist must be used.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Facial Pain; Formaldehyde; Ketoprofen; Male; Meloxicam; Mice; Naltrexone; Narcotic Antagonists; Stereoisomerism; Thiazines; Thiazoles

2011
The effects of opioid receptor antagonists on electroacupuncture-produced anti-allodynia/hyperalgesia in rats with paclitaxel-evoked peripheral neuropathy.
    Brain research, 2011, Sep-26, Volume: 1414

    Research supports the effectiveness of acupuncture for conditions such as chronic low back and knee pain. In a five-patient pilot study the modality also improved the symptoms of chemotherapy-induced neuropathic pain. Using an established rat model of paclitaxel-induced peripheral neuropathy, we evaluated the effect of electroacupuncture (EA) on paclitaxel-induced hyperalgesia and allodynia that has not been studied in an animal model. We hypothesize that EA would relieve the paclitaxel-induced mechanical allodynia and hyperalgesia, which was assessed 30 min after EA using von Frey filaments. Beginning on day 13, the response frequency to von Frey filaments (4-15 g) was significantly increased in paclitaxel-injected rats compared to those injected with vehicle. EA at 10 Hz significantly (P<0.05) decreased response frequency at 4-15 g compared to sham EA; EA at 100 Hz only decreased response frequency at 15 g stimulation. Compared to sham EA plus vehicle, EA at 10 Hz plus either a μ, δ, or κ opioid receptor antagonist did not significantly decrease mechanical response frequency, indicating that all three antagonists blocked EA inhibition of allodynia and hyperalgesia. Since we previously demonstrated that μ and δ but not κ opioid receptors affect EA anti-hyperalgesia in an inflammatory pain model, these data show that EA inhibits pain through different opioid receptors under varying conditions. Our data indicate that EA at 10 Hz inhibits mechanical allodynia/hyperalgesia more potently than does EA at 100 Hz. Thus, EA significantly inhibits paclitaxel-induced allodynia/hyperalgesia through spinal opioid receptors, and EA may be a useful complementary treatment for neuropathic pain patients.

    Topics: Analysis of Variance; Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Electroacupuncture; Hyperalgesia; Male; Naltrexone; Narcotic Antagonists; Paclitaxel; Pain Measurement; Pain Threshold; Peripheral Nervous System Diseases; Random Allocation; Rats; Rats, Sprague-Dawley; Somatostatin

2011
Chronic treatment with agonists of beta(2)-adrenergic receptors in neuropathic pain.
    Experimental neurology, 2010, Volume: 221, Issue:1

    Expression of beta(2)-adrenoceptors (beta(2)-ARs) within the nociceptive system suggested their potential implication in nociception and pain. Recently, we demonstrated that these receptors are essential for neuropathic pain treatment by antidepressant drugs. The aim of the present study was to investigate whether the stimulation of beta(2)-ARs could in fact be adequate to alleviate neuropathic allodynia. Neuropathy was induced in mice by sciatic nerve cuffing. We demonstrate that chronic but not acute stimulation of beta(2)-ARs with agonists such as clenbuterol, formoterol, metaproterenol and procaterol suppressed neuropathic allodynia. By using a pharmacological approach with the beta(2)-AR antagonist ICI 118,551 or a transgenic approach with mice deficient for beta(2)-ARs, we confirmed that the antiallodynic effect of these agonists was specifically related to their action on beta(2)-ARs. We also showed that chronic treatment with the beta(1)-AR agonist xamoterol or with the beta(3)-AR agonist BRL 37344 had no effect on neuropathic allodynia. Chronic stimulation of beta(2)-ARs, but not beta(1)- or beta(3)-ARs, by specific agonists is thus able to alleviate neuropathic allodynia. This action of beta(2)-AR agonists might implicate the endogenous opioid system; indeed chronic clenbuterol effect can be acutely blocked by the delta-opioid receptor antagonist naltrindole. Present results show that beta(2)-ARs are not only essential for the antiallodynic action of antidepressant drugs on sustained neuropathic pain, but also that the stimulation of these receptors is sufficient to relieve neuropathic allodynia in a murine model. Our data suggest that beta(2)-AR agonists may potentially offer an alternative therapy to antidepressant drugs for the chronic treatment of neuropathic pain.

    Topics: Adrenergic beta-2 Receptor Agonists; Adrenergic beta-Agonists; Adrenergic beta-Antagonists; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Interactions; Functional Laterality; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Narcotic Antagonists; Pain Measurement; Pain Threshold; Propanolamines; Receptors, Adrenergic, beta-2; Sciatica; Time Factors

2010
Evidence for a role of opioids in epoxyeicosatrienoic acid-induced cardioprotection in rat hearts.
    American journal of physiology. Heart and circulatory physiology, 2010, Volume: 298, Issue:6

    We previously demonstrated that several epoxyeicosatrienoic acids (EETs) produce reductions in myocardial infarct size in rats and dogs. Since a recent study demonstrated the release of opioids in mediating the antinociceptive effect of 14,15-EET, we hypothesized that endogenous opioids may also be involved in mediating the cardioprotective effect of the EETs. To test this hypothesis, we used an in vivo rat model of infarction and a rat Langendorff model. In the infarct model, hearts were subjected to 30 min occlusion of the left coronary artery and 2 h reperfusion. Animals were treated with 11,12-EET or 14,15-EET (2.5 mg/kg) alone 15 min before occlusion or with opioid antagonists [naloxone, naltrindole, nor-binaltorphimine (nor-BNI), and d-Phe-Cys-Tyr-d-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), a nonselective, a selective delta, a selective kappa, and a selective mu receptor antagonist, respectively] 10 min before EET administration. In four separate groups, antiserum to Met- and Leu-enkephalin and dynorphin-A-(1-17) was administered 50 min before the 11,12-EET administration. Infarct size expressed as a percent of the area at risk (IS/AAR) was 63.5 + or - 1.2, 45.3 + or - 1.0, and 40.9 + or - 1.2% for control, 11,12-EET, and 14,15-EET, respectively. The protective effects of 11,12-EET were abolished by pretreatment with either naloxone (60.5 + or - 1.8%), naltrindole (60.8 + or - 1.0%), nor-BNI (62.3 + or - 2.8%), or Met-enkephalin antiserum (63.2 + or - 1.7%) but not CTOP (42.0 + or - 3.0%). In isolated heart experiments, 11,12-EET was administered to the perfusate 15 min before 20 min global ischemia followed by 45 min reperfusion in control hearts or in those pretreated with pertussis toxin (48 h). 11,12-EET increased the recovery of left ventricular developed pressure from 33 + or - 1 to 45 + or - 6% (P < 0.05) and reduced IS/AAR from 37 + or - 4 to 20 + or - 3% (P < 0.05). Both pertussis toxin and naloxone abolished these beneficial effects of 11,12-EET. Taken together, these results suggest that the major cardioprotective effects of the EETs depend on activation of a G(i/o) protein-coupled delta- and/or kappa-opioid receptor.

    Topics: 8,11,14-Eicosatrienoic Acid; Analgesics, Opioid; Animals; Disease Models, Animal; GTP-Binding Protein alpha Subunits, Gi-Go; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Somatostatin

2010
Dorsal hippocampal opioidergic system modulates anxiety-like behaviors in adult male Wistar rats.
    Psychiatry and clinical neurosciences, 2010, Volume: 64, Issue:6

    In the present study, we investigated the possible influence of the opioidergic system of the dorsal hippocampus on anxiety-like behaviors.. Elevated plus-maze, which is one of the methods used for testing anxiety, was used in the present study. Rats were anesthetized with ketamine and xylazine and special cannulas were inserted stereotaxically into the CA1 region of the dorsal hippocampus. After 1 week of recovery, the effects of intra-CA1 administration of morphine (0.25, 0.5, 1 and 2 µg/rat; 1 µl/rat; 0.5 µl/in each side), naloxone (2, 4, 6 and 8 µg/rat), enkephalin (1, 2, 5 and 10 µg/rat) and naltrindole (0.25, 0.5, 1 and 2 µg/rat) on percentage open arm time (%OAT) and percentage open arm entries (%OAE) were determined.. Bilateral administration of morphine into CA1 decreases %OAT and %OAE, indicating an anxiogenic-like effect. Intra-CA1 injection of naloxone, an opioid receptor antagonist, increased both %OAT and %OAE, parameters of anxiolytic-like behavior. Bilateral administration of δ-opioid receptor agonist, [D-Pen(2,5) ]-enkephalin acetate hydrate into the CA1, induced an anxiolytic-like effect. Furthermore, intra-CA1 injection of δ-opioid receptor antagonist, naltrindole hydrochloride, increased anxiety-related behaviors.. The results of the present study demonstrate that activation of μ-opioid receptors in this area produce an anxiogenic response while activation of δ-opioid receptors produces an anxiolytic response.

    Topics: Analgesics, Opioid; Animals; Anxiety; CA1 Region, Hippocampal; Disease Models, Animal; Enkephalin, D-Penicillamine (2,5)-; Male; Maze Learning; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu

2010
Delta-opioid receptor antagonists prevent sensitization to the conditioned rewarding effects of morphine.
    Biological psychiatry, 2009, Jan-15, Volume: 65, Issue:2

    Functional interactions between mu- and delta-opioid receptors (MOPr and DOPr, respectively) are implicated in morphine tolerance and dependence. The contribution of DOPr to the conditioned rewarding effects of morphine and the enhanced conditioned response that occurs after repeated morphine administration is unknown. This issue was addressed with the conditioned place preference procedure (CPP).. Rats received home cage injections of saline or morphine (5.0 mg/kg/day x 5 days) before conditioning. For sensitization studies, DOPr antagonists (DOPr1/2: naltrindole, DOPr2: naltriben, DOPr1: 7-benzylidenenaltrexone) were administered before morphine injections. Conditioning sessions (2 morphine; 2 saline) commenced 3 days later. To assess the influence of acute DOPr blockade on the conditioning of morphine reward in naïve animals, 3 morphine and 3 saline conditioning sessions were employed. Antagonists were administered before morphine conditioning sessions.. Morphine was ineffective as a conditioning stimulus after two conditioning sessions in naïve rats. However, doses > or = 3.0 mg/kg produced significant CPP in morphine pre-exposed rats, confirming that sensitization develops to the conditioned rewarding effects of morphine. In animals that received morphine pre-exposure with naltrindole or naltriben but not 7-benzylidenenaltrexone, sensitization was prevented. No attenuation of morphine CPP was observed in animals that received DOPr antagonists acutely, before conditioning sessions.. These data indicate a critical role of DOPr systems in mediating sensitization to the conditioned rewarding effects of morphine. The efficacy of naltrindole and naltriben in preventing the enhanced response to morphine suggest the specific involvement of DOPr2 in the sensitization process.

    Topics: Analysis of Variance; Animals; Association Learning; Behavior, Animal; Benzylidene Compounds; Conditioning, Classical; Disease Models, Animal; Male; Morphine Dependence; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptor Cross-Talk; Receptors, Opioid, delta; Receptors, Opioid, mu; Reinforcement, Psychology; Statistics, Nonparametric

2009
Evidence for the involvement of the opioid system in the antidepressant-like effect of folic acid in the mouse forced swimming test.
    Behavioural brain research, 2009, Jun-08, Volume: 200, Issue:1

    The opioid system has been implicated in major depression and in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of the water-soluble B-vitamin folic acid in the forced swimming test (FST). The effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist), naltrindole (3 mg/kg, i.p., a selective delta-opioid receptor antagonist), naloxonazine (10 mg/kg, i.p., a selective mu(1)-opioid receptor antagonist, 24 h before), but not with naloxone methiodide (1 mg/kg, s.c., a peripherally acting opioid receptor antagonist). In addition, a sub-effective dose of folic acid (1 nmol/site, i.c.v.) produced a synergistic antidepressant-like effect in the FST with a sub-effective dose of morphine (1 mg/kg, s.c.). A further approach was designed to investigate the possible relationship between the opioid system and NMDA receptors in the mechanism of action of folic acid in the FST. Pretreatment of the animals with naloxone (1 mg/kg, i.p.) prevented the synergistic antidepressant-like effect of folic acid (1 nmol/site, i.c.v.) and MK-801 (0.001 mg/kg, i.p., a non-competitive NMDA receptor antagonist). Together the results firstly indicate that the anti-immobility effect of folic acid in the FST is mediated by an interaction with the opioid system (mu(1) and delta), likely dependent on the inhibition of NMDA receptors elicited by folic acid.

    Topics: Analgesics, Opioid; Animals; Antidepressive Agents; Anxiety; Behavior, Animal; Disease Models, Animal; Dizocilpine Maleate; Drug Combinations; Excitatory Amino Acid Antagonists; Exploratory Behavior; Folic Acid; Mice; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Swimming

2009
The antinociceptive properties of reboxetine in acute pain.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2009, Volume: 19, Issue:10

    The antinociceptive effects of the selective noradrenaline reuptake inhibitor antidepressant reboxetine and its interaction with various opioid and noradrenaline receptor subtypes were evaluated. Reboxetine (i.p.) induced a weak dose-dependent antinociceptive effect in acute pain, using the hotplate model. The reboxetine-induced antinociception was significantly inhibited by the opioid receptor antagonists naloxone, nor-BNI, naltrindole and b-FNA, implying a non-selective role for the opioid receptors in the reboxetine's antinociceptive effect. The adrenergic antagonists yohimbine and phentolamine attenuated to some extent the reboxetine-induced antinociception, implying a minor adrenergic mechanism of antinociception. The addition of opioid or alpha2 agonists, did not potentiate the antinociception effect of reboxetine. Thus, it seems that reboxetine possesses a weak antinociceptive effect, mediated by non-selective opioid receptors and influenced somewhat by noradrenaline alpha2 receptors. These results suggest that reboxetine as monotherapy does not have sufficient efficacy in the management of acute pain. However, further research is needed in order to establish its possible use alone or in combination with other antidepressants or analgesics in the amelioration of chronic pain disorders.

    Topics: Adrenergic Antagonists; Analgesics; Animals; Antidepressive Agents; Clonidine; Disease Models, Animal; Drug Interactions; Male; Mice; Mice, Inbred ICR; Morphine; Morpholines; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Reboxetine; Receptors, Opioid, mu

2009
The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice.
    Naunyn-Schmiedeberg's archives of pharmacology, 2009, Volume: 380, Issue:4

    Several works reveal that nitric oxide could enhance the peripheral antinociception induced by opioids during acute inflammation. Nonetheless, the role of nitric oxide in the local antinociceptive effects of delta-opioid receptor (DOR) agonists during chronic peripheral inflammation is not known. The aim of this study is to evaluate whether nitric oxide would enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Chronic inflammatory pain was induced by the subplantar administration of complete Freund's adjuvant (CFA; 30 microl) and thermal hyperalgesia assessed by plantar test. In C57BL/6J mice, we evaluated the local antinociceptive effects of a DOR agonist, [D-Pen2,5]-enkephalin (DPDPE) and a nitric oxide donor, DETA NONOate DETA/NO 2,2'-(hydroxynitrosohydrazino) Bis-Ethanamine (NOC-18) alone or combined (DPDPE plus NOC-18) at 1, 4, 7, and 10 days after CFA injection. The reversibility of the peripheral antinociceptive effects of DPDPE, alone or combined with NOC-18, was assessed with the local administration of selective (naltrindole) and non-selective (naloxone methiodide) DOR antagonists. The local administration of DPDPE or NOC-18 alone dose-dependently inhibited the thermal hyperalgesia induced by peripheral inflammation. Moreover, the co-administration of NOC-18 with DPDPE significantly increased the antinociceptive effects produced by DPDPE from 1 to 10 days of CFA-induced inflammatory pain (P < 0.05). These effects were completely blocked by naltrindole and naloxone methiodide. Our results demonstrate that nitric oxide might enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain by interaction with peripheral DOR, representing a useful strategy for an efficient antinociceptive treatment of peripheral inflammatory pain.

    Topics: Analgesics, Opioid; Animals; Chronic Disease; Disease Models, Animal; Drug Therapy, Combination; Enkephalin, D-Penicillamine (2,5)-; Freund's Adjuvant; Hot Temperature; Hyperalgesia; Inflammation; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Pain Measurement; Receptors, Opioid, delta; Time Factors

2009
Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion.
    Anesthesia and analgesia, 2009, Volume: 109, Issue:5

    Methadone is an opioid agonist often given to manage acute and chronic pain. We sought to determine whether methadone compared with morphine dose dependently reduces myocardial infarct size (IS) and whether the mechanism is delta-opioid receptor mediated. Furthermore, we examined whether myocardial IS reduction varies with the timing of methadone administration or duration of induced ischemia.. After surgical instrumentation, we divided male Sprague-Dawley rats into 3 sets. The first set was divided into groups, which received methadone (0.03-3 mg/kg), morphine (0.03-3 mg/kg), or water (placebo) 30 min before ischemia. Some animals of the first set also received the delta-opioid antagonist naltrindole (5 mg/kg) before methadone (0.3 mg/kg), morphine (0.3 mg/kg), or placebo administration. The second set of animals was divided into groups that received methadone (0.3 mg/kg) 5 min before reperfusion or 10 s after reperfusion. These 2 sets of animals were subjected to 30 min of myocardial ischemia by left anterior descending coronary artery occlusion and then 2 h of reperfusion. The third set of animals received placebo, methadone (0.3 mg/kg), or morphine (0.3 mg/kg) 5 min before reperfusion and were subjected to 45 min of ischemia by left anterior descending coronary artery occlusion with 2 h of reperfusion. Myocardial IS was assessed by staining myocardial tissue with triphenyltetrazolium chloride and expressed as a percentage of the area at risk (mean +/- sem).. Methadone or morphine administered before ischemia reduced myocardial IS. The greatest effect was achieved at a dose of 0.3 mg/kg (methadone, 46% +/- 1%, P < 0.001 and morphine, 47% +/- 1%, P < 0.001 versus placebo, 61% +/- 1%, respectively). Naltrindole (5 mg/kg) blocked methadone-induced (0.3 mg/kg) and morphine-induced (0.3 mg/kg) cardioprotection (naltrindole + methadone, 58% +/- 1%, P < 0.001 versus methadone; and naltrindole + morphine, 58 +/- 1%, P < 0.001 versus morphine). Methadone (0.3 mg/kg) reduced myocardial IS when given 5 min before reperfusion (46% +/- 1%, P < 0.001 versus placebo) but not 10 s after reperfusion (60% +/- 1%, P = 0.675 versus placebo). No significant myocardial IS differences were seen for placebo when comparing the 45-min ischemia group (64% +/- 1%) with the 30-min ischemia group (60% +/- 1%, P = 0.069). The longer ischemia time of 45 min abrogated methadone-induced IS reduction (64% +/- 2%, P = 0.867 versus 45-min ischemia placebo group) and morphine-induced IS reduction (65% +/- 1%, P = 0.836 versus 45-min ischemia placebo group).. These findings demonstrate that methadone and morphine produce similar myocardial IS-sparing effects that are delta-opioid receptor mediated and that are dependent on the duration of myocardial ischemia.

    Topics: Analgesics, Opioid; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Male; Methadone; Morphine; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Time Factors

2009
YFa, a chimeric opioid peptide, induces kappa-specific antinociception with no tolerance development during 6 days of chronic treatment.
    Journal of neuroscience research, 2008, May-15, Volume: 86, Issue:7

    Our previous study showed that YGGFMKKKFMRFamide (YFa), a chimeric peptide of Met-enkephalin, and Phe-Met-Arg-Phe-NH2 induced naloxone-reversible antinociception and attenuated the development of tolerance to morphine analgesia. In continuation, the present study investigated which specific opioid receptors-mu, delta or kappa-mediate the observed YFa antinociception pharmacologically using specific antagonists and whether chronic administration of YFa at 26.01 micromol/kg per day induces tolerance and its effect on the expression of mu and kappa opioid receptors from day 4 to day 6, with endomorphine-1 (EM-1) and saline taken as positive and negative controls, respectively. Quantitative differential expression analysis was carried out by real-time reverse-transcriptase polymerase chain reaction, and the corresponding changes in protein levels were assessed by Western blot. A pharmacological investigation revealed that nor-binaltorphimine, a specific kappa opioid receptor-1 (KOR1) antagonist, completely antagonized the antinociception induced by 39.01 micromol/kg of YFa. Importantly, its chronic intraperitoneal administration did not result in significant tolerance over 6 days, whereas EM-1 induced significant tolerance after day 4. Differential expression analysis revealed that EM-1 caused up-regulation of mu opioid receptor-1 on day 4, followed by down-regulation on later days. Interestingly, YFa treatment caused a decrease on day 4, followed by an increase in the expression of KOR1 from day 5 onward. In conclusion, YFa induces kappa-specific antinociception, with no development of tolerance during 6 days of chronic treatment, which further articulates new directions for improved designing of peptide-based analgesics that may be devoid of adverse effects like tolerance.

    Topics: Analgesics, Opioid; Analysis of Variance; Animals; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, Methionine; FMRFamide; Gene Expression Regulation; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Measurement; Rats; Rats, Wistar; Reaction Time; Receptors, Opioid, kappa; Receptors, Opioid, mu; Time Factors

2008
Mu-opioid receptor in the nucleus submedius: involvement in opioid-induced inhibition of mirror-image allodynia in a rat model of neuropathic pain.
    Neurochemical research, 2008, Volume: 33, Issue:10

    The current study investigated the roles of various subtypes of opioid receptors expressed in the thalamic nucleus submedius (Sm) in inhibition of mirror-image allodynia induced by L5/L6 spinal nerve ligation in rats. Morphine was microinjected into the Sm, which produced a dose-dependent inhibition of mirror-image allodynia; this effect was antagonized by pretreatment with non-selective opioid receptor antagonist naloxone. Microinjections of endomorphin-1 (mu-receptor agonist), or [D-Ala(2), D-Leu(5)]-enkephalin (DADLE, delta-/mu-receptor agonist), also inhibited mirror-image allodynia, and these effects were blocked by the selective mu-receptor antagonist, beta-funaltrexamine hydrochloride. The DADLE-induced inhibition, however, was not influenced by the delta-receptor antagonist naltrindole. The kappa-receptor agonist, spiradoline mesylate salt, failed to alter the mirror-image allodynia. These results suggest that Sm opioid receptor signaling is involved in inhibition of mirror-image allodynia; this effect is mediated by mu- (but not delta- and kappa-) opioid receptors in the rat model of neuropathic pain.

    Topics: Animals; Behavior, Animal; Disease Models, Animal; Enkephalin, Leucine-2-Alanine; Hyperalgesia; Ligation; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Neuralgia; Oligopeptides; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Nerves; Thalamic Nuclei

2008
The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies.
    Anesthesia and analgesia, 2008, Volume: 106, Issue:6

    Endomorphin-1 and endomorphin-2 are endogenous peptides that are highly selective for mu-opioid receptors. However, studies of their functional efficacy and selectivity are controversial. In this study, we systematically compared the effects of intrathecal (i.t.) administration of endomorphin-1 and -2 on nociception assays and G protein activation with those of [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), a highly effective peptidic mu-opioid receptor agonist.. Male Sprague-Dawley rats were used. Acute and inflammatory pain models were used to compare the duration and magnitude of antinociception. Agonist-stimulated [(35)S]GTP gamma S binding was used to observe the functional activity at the level of the receptor-G protein in both spinal cord and thalamic membranes. In addition, antagonists selective for each receptor type were used to verify the functional selectivity of endomorphins in the rat spinal cord.. After i.t. administration, endomorphin-1 and -2 produced less antinociceptive effects than DAMGO in the model of acute pain. Concentration-response curves for DAMGO-, endomorphin-1-, and endomorphin-2-stimulated [(35)S]GTP gamma S binding revealed that both endomorphin-1 and -2 produced less G protein activation (i.e., approximately 50%-60%) than DAMGO did in the membranes of spinal cord and thalamus. In addition, i.t. endomorphin-induced antinociception was blocked by mu-opioid receptor selective dose of naltrexone (P < 0.05), but not by delta- and kappa-opioid receptor antagonists, naltrindole and nor-binaltorphimine (P > 0.05).. Endomorphins are partial agonists for G protein activation at spinal and thalamic mu-opioid receptors. Both in vivo and in vitro measurements together suggest that DAMGO is more effective than endomorphins. Spinal endomorphins' antinociceptive efficacy may range between 53% and 84% depending on the intensity and modality of the nociceptive stimulus.

    Topics: Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Partial Agonism; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Cord; Sulfur Radioisotopes; Thalamus; Time Factors

2008
Naloxone acts as a potent analgesic in transgenic mouse models of sickle cell anemia.
    Proceedings of the National Academy of Sciences of the United States of America, 2007, Apr-03, Volume: 104, Issue:14

    Sickle cell anemia is a common genetic disorder in African Americans. Opioid analgesics are traditionally the treatment for the severe pain associated with this disease. Here we reveal that the opioid antagonist naloxone possesses potent analgesic activity in two transgenic mouse models of sickle cell anemia (NY1DD and hBERK1) and not in their respective controls (ICR-CD1 and C57BL/6J) when administered by three parenteral routes [intracerebroventricular (i.c.v.), intrathecal, and subcutaneous]. In the NY1DD mice, naloxone (i.c.v.) possessed approximately 300-fold greater potency than morphine (i.c.v.). Other opioid antagonists (naltrexone, norbinaltorphimine, and naltrindole) were substantially less effective in producing analgesia. Naloxone and morphine were synergistic in NY1DD mice, suggesting different receptor systems. Microarray analysis suggested naloxone-induced down-regulation of the CC chemokine receptor (CCR)5 in NY1DD mice but not in control mice. Pretreatment of control mice with CC chemokine ligand 5 [CCL5 (RANTES)] enabled naloxone to produce analgesia similar to that observed in NY1DD mice. Mu opioid receptor knockout mice treated similarly also displayed analgesia. That the effect of CCL5 was specifically related to CCR5 and/or CCR1 activation was demonstrated by antagonism of analgesia with the chemokine antagonist methionylated RANTES. Similar antagonism of naloxone-induced analgesia also was observed when NY1DD mice were pretreated with methionylated RANTES. These results indicate that CCR5/CCR1 receptors are directly or indirectly involved in analgesia produced by naloxone. The present study suggests that naloxone may be clinically useful in the treatment of pain associated with sickle cell disease and other disorders involving inflammation.

    Topics: Analgesics; Analgesics, Opioid; Anemia, Sickle Cell; Animals; Chemokine CCL5; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Drug Synergism; Injections, Intraventricular; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Transgenic; Morphine; Naloxone; Pain; Pain Measurement; Receptors, CCR5

2007
Striatal delta opioid receptor binding in experimental models of Parkinson's disease and dyskinesia.
    Movement disorders : official journal of the Movement Disorder Society, 2007, Volume: 22, Issue:1

    Enhanced delta opioid receptor transmission may represent an endogenous compensatory mechanism in parkinsonism to reduce the activity of the indirect striatopallidal pathway following dopamine depletion. Furthermore, increased delta opioid receptor transmission may be causative in the production of dyskinesia following repeated dopaminergic treatment in Parkinson's disease. The present study employed radioligand receptor autoradiography, using [3H]naltrindole, a ligand selective for the delta opioid receptor, to assess delta opioid receptor binding sites in forebrain regions of reserpine-treated rats, and in parkinsonian nondyskinetic, and dyskinetic MPTP-lesioned macaques. In reserpine-treated animals, specific delta opioid binding was increased in premotor cortex (+30%), sensorimotor striatum (+20%), and associative striatum (+17%) rostrally, but was not changed in caudal forebrain. In contrast, delta opioid receptor binding was not significantly altered at any region analyzed, in either nondyskinetic or dyskinetic, MPTP-lesioned macaques, compared to normal. These results suggest that transient changes in delta opioid receptor binding may occur in motor circuits following acute dopamine depletion. However, in the more chronic MPTP-lesioned macaque model, simple changes in delta opioid receptor number or affinity are unlikely to contribute to mechanisms for abnormal opioid transmission in Parkinson's disease and dyskinesia.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Analysis of Variance; Animals; Corpus Striatum; Disease Models, Animal; Dopamine Plasma Membrane Transport Proteins; Dyskinesias; Macaca mulatta; Male; Naltrexone; Narcotic Antagonists; Parkinson Disease; Prosencephalon; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Reserpine; Tritium

2007
Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2006, Volume: 31, Issue:4

    Clinically, it has been reported that chronic pain induces depression, anxiety, and reduced quality of life. The endogenous opioid system has been implicated in nociception, anxiety, and stress. The present study was undertaken to investigate whether chronic pain could induce anxiogenic effects and changes in the opioidergic function in the amygdala in mice. We found that either injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by sciatic nerve ligation produced a significant anxiogenic effect at 4 weeks after the injection or surgery. Under these conditions, the selective mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO)- and the selective delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)-stimulated [35S]GTPgammaS binding in membranes of the amygdala was significantly suppressed by CFA injection or nerve ligation. CFA injection was associated with a significant increase in the kappa-opioid receptor agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride (ICI199,441)-stimulated [35S]GTPgammaS binding in membranes of the amygdala. The intracerebroventricular administration and microinjection of a selective mu-opioid receptor antagonist, a selective delta-opioid receptor antagonist, and the endogenous kappa-opioid receptor ligand dynorphin A caused a significant anxiogenic effect in mice. We also found that thermal hyperalgesia induced by sciatic nerve ligation was reversed at 8 weeks after surgery. In the light-dark test, the time spent in the lit compartment was not changed at 8 weeks after surgery. Collectively, the present data constitute the first evidence that chronic pain has an anxiogenic effect in mice. This phenomenon may be associated with changes in opioidergic function in the amygdala.

    Topics: Amygdala; Analgesics, Opioid; Analysis of Variance; Animals; Anxiety; Behavior, Animal; Benzamides; Chronic Disease; Diazepam; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Freund's Adjuvant; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Intraventricular; Male; Maze Learning; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pain Measurement; Piperazines; Protein Binding; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reaction Time; Sciatica; Somatostatin; Sulfur Isotopes; Time Factors; Tranquilizing Agents

2006
Chronic pain-induced emotional dysfunction is associated with astrogliosis due to cortical delta-opioid receptor dysfunction.
    Journal of neurochemistry, 2006, Volume: 97, Issue:5

    It has been widely recognized that chronic pain could cause physiological changes at supraspinal levels. The delta-opioidergic system is involved in antinociception, emotionality, immune response and neuron-glia communication. In this study, we show that mice with chronic pain exhibit anxiety-like behavior and an increase of astrocytes in the cingulate cortex due to the dysfunction of cortical delta-opioid receptor systems. Using neural stem cells cultured from the mouse embryonic forebrain, astrocyte differentiation was clearly observed following long-term exposure to the selective delta-opioid receptor antagonist, naltrindole. We also found that micro-injection of either activated astrocyte or astrocyte-conditioned medium into the cingulate cortex of mice aggravated the expression of anxiety-like behavior. Our results indicate that the chronic pain process promotes astrogliosis in the cingulate cortex through the dysfunction of cortical delta-opioid receptors. This phenomenon may lead to emotional disorders including aggravated anxiety under chronic pain-like state.

    Topics: Animals; Anxiety Disorders; Astrocytes; Brain Tissue Transplantation; Cells, Cultured; Cerebral Cortex; Chronic Disease; Culture Media, Conditioned; Disease Models, Animal; Gliosis; Gyrus Cinguli; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Neuralgia; Pain, Intractable; Peripheral Nervous System Diseases; Receptors, Opioid, delta; Sciatic Neuropathy; Stem Cells

2006
Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease.
    Experimental neurology, 2001, Volume: 171, Issue:1

    Long-term treatment of Parkinson's disease with levodopa is complicated by the emergence of involuntary movements, known as levodopa-induced dyskinesia. It has been hypothesized that increased opioid transmission in striatal output pathways may be responsible for the generation of dyskinesia. In this study, we have investigated the effect of blockade of opioid peptide transmission on levodopa-induced dyskinesia in a primate model of Parkinson's disease-the MPTP-lesioned marmoset. Coadministration of nonselective and mu- or delta-subtype-selective opioid receptor antagonists with levodopa resulted in a significant decrease in dyskinesia. There was no attenuation of the anti-parkinsonian actions of levodopa. These data suggest that specific mu- or delta-opioid receptor antagonists might be applicable clinically in the treatment of levodopa-induced dyskinesia in Parkinson's disease.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Callithrix; Disease Models, Animal; Drug Therapy, Combination; Dyskinesias; Female; Hypokinesia; Levodopa; Male; Morphinans; Motor Activity; Naltrexone; Narcotic Antagonists; Parkinsonian Disorders; Posture; Receptors, Opioid, delta; Receptors, Opioid, mu

2001
Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus.
    Neuroscience, 1999, Volume: 89, Issue:1

    In a model of self-sustaining status epilepticus induced in rats by 30 min intermittent stimulation of the perforant path through chronically implanted electrodes, a decrease in dynorphin-like immunoreactivity in the dentate gyrus and CA3 was observed 3 h and 24 h after the induction of status epilepticus. Enkephalin-like immunoreactivity decreased 3 h but not 24 h after perforant path stimulation. Injection into the hilus of the dentate gyrus 10 min prior to stimulation of the kappa-receptor agonist dynorphin-A(1-13), the delta-receptor antagonists ICI-174864 and naltrindole, as well as i.p. injection of naloxone prevented the development of status epilepticus. Perihilar administration of the delta-agonist [D-Ser2]Leu-enkephalin-Thr6 or the kappa-antagonist nor-Binaltorphimine, but not of the mu-agonist [D-Ala2,N-Me-Phe4,Gly-ol5]-Enkephalin, facilitated the establishment of self-sustaining status epilepticus. Injection into the hilus of dynorphin-A(1-13) after the end of perforant path stimulation, stopped established status epilepticus, while administration of naloxone, naltrindole and ICI-174864 were ineffective. We conclude that kappa-opioids in the hippocampus counteract initiation and maintenance of status epilepticus, while delta-opioids promote initiation, but not maintenance of seizure activity. These data are important for the understanding the mechanisms which underlie initiation and maintenance of status epilepticus and for the development of new approaches for its effective management.

    Topics: Action Potentials; Analgesics; Analgesics, Opioid; Animals; Disease Models, Animal; Dynorphins; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Immunohistochemistry; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Opioid Peptides; Peptide Fragments; Perforant Pathway; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Status Epilepticus

1999
Spinal effect of a neuropeptide FF analogue on hyperalgesia and morphine-induced analgesia in mononeuropathic and diabetic rats.
    British journal of pharmacology, 1999, Volume: 127, Issue:6

    1DMe, a neuropeptide FF (NPFF) analogue, has been shown to produce antinociception and to enhance morphine analgesia in rats after intrathecal administration. To determine whether 1DMe could correct hyperalgesia and restore morphine efficacy in mononeuropathic (MN) and diabetic (D) rats we examined the spinal effect of 1DMe in MN and D rats without and after spinal blockade of mu- and delta-opioid receptors with CTOP and naltrindole, respectively. The influence of 1DMe on morphine-induced antinociception was assessed in the two models using isobolographic analysis. Whereas 1DMe intrathecally injected (0.1, 1, 7.5 microg rat(-1)) was ineffective in normal (N) rats, it suppressed mechanical hyperalgesia (decrease in paw pressure-induced vocalisation thresholds) in both MN and D rats. This effect was completely cancelled by CTOP (10 microg rat(-1)) and naltrindole (1 microg rat(-1)) suggesting that it requires the simultaneous availability of mu- and delta-opioid receptors. The combinations of morphine: 1DMe (80.6:19.4% and 99.8:0.2%, in MN and D rats, respectively) followed by isobolographic analysis, showed a superadditive interaction, relative to the antinociceptive effect of single doses, in D rats only. In N rats, the combination of morphine: 1DMe (0.5 mg kg(-1), i.v.: 1 microg rat(-1), i.t., ineffective doses) resulted in a weak short-lasting antinociceptive effect. These results show a different efficacy of 1DMe according to the pain model used, suggesting that the pro-opioid effects of the NPFF in neuropathic pain are only weak, which should contribute to hyperalgesia and to the impaired efficacy of morphine.

    Topics: Analgesia; Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Diabetes Mellitus, Experimental; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Hyperalgesia; Injections, Spinal; Male; Morphine; Naltrexone; Narcotic Antagonists; Nervous System Diseases; Oligopeptides; Pain; Rats; Rats, Sprague-Dawley; Somatostatin; Time Factors; Vocalization, Animal

1999
Activity at phencyclidine and mu opioid sites mediates the hyperalgesic and antinociceptive properties of the N-terminus of substance P in a model of visceral pain.
    Neuroscience, 1994, Volume: 60, Issue:2

    Substance P, a putative neurotransmitter or neuromodulator of nociception or pain in the spinal cord, exhibits both antinociceptive and hyperalgesic properties. Investigators have shown that the N-terminal metabolite of substance P, substance P(1-7), produces naloxone-reversible antinociception when given supraspinally and systemically in mice and hyperalgesia when injected intrathecally in rats. The goal of our investigation was to identify the receptors mediating these actions of substance P(1-7) at the initial site of release of substance P, i.e. in the spinal cord. Thirty minutes after intrathecal injection, substance P(1-7) produced naloxone-reversible antinociception in a dose-dependent manner in the abdominal stretch assay. When administered with naloxone, substance P(1-7) produced hyperalgesia 5 and 10 min after injection, which was inhibited by dizocilpine (MK-801), a phencyclidine ligand and non-competitive antagonist of N-methyl-D-aspartate. Antinociception was inhibited by the mu-selective opioid antagonist beta-funaltrexamine, but not by the mu 1-selective opioid antagonist naloxonazine or the delta-selective antagonist naltrindole, indicating a mu 2-opioid receptor-mediated effect. These findings suggest that the N-terminal portion of substance P may modulate nociception or pain, as demonstrated in the acetic acid abdominal stretch (writhing) assay, via activation of two different receptor systems. Substance P(1-7)-induced hyperalgesia is mediated by a phencyclidine-sensitive mechanism and antinociception involves activity at mu-opioid, most likely mu 2, receptors.

    Topics: Animals; Biological Assay; Disease Models, Animal; Dizocilpine Maleate; Hyperalgesia; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Peptide Fragments; Phencyclidine; Receptors, Opioid, mu; Spinal Cord; Substance P

1994
Selective opioid receptor agonists modulate mechanical allodynia in an animal model of neuropathic pain.
    Pain, 1993, Volume: 53, Issue:3

    This study evaluated the antinociceptive effects of systemically administered selective opioid agonists of mu (DAMGO), delta (BUBU) and kappa (U 69593) receptors on the vocalization threshold to paw pressure in a rat model of peripheral unilateral mononeuropathy produced by loose ligatures around the common sciatic nerve. DAMGO (0.5-2 mg/kg), BUBU (1.5-6 mg/kg) and U 69593 (0.75-3 mg/kg) injected intravenously (i.v.) produced a potent long-lasting antinociceptive effect on both hind paws. The effects on the lesioned paw were clearly and statistically more potent than for the non-lesioned paw. The selective antinociceptive effect of 2 mg/kg DAMGO, 3 mg/kg BUBU and 1.5 mg/kg U 69593 were completely prevented by prior administration of the appropriate antagonists: 0.1 mg/kg naloxone, 1 mg/kg naltrindole and 0.4 mg/kg MR 2266. The present data clearly show that an acute i.v. injection of these selective opioid agonists induces potent antinociceptive effects in a rat model of peripheral neuropathy. These data are discussed with regard to the classical view that there is opioid resistance in neuropathic pain.

    Topics: Analgesics; Animals; Benzeneacetamides; Benzomorphans; Disease Models, Animal; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Vocalization, Animal

1993