naltrindole has been researched along with Chronic-Disease* in 6 studies
6 other study(ies) available for naltrindole and Chronic-Disease
Article | Year |
---|---|
The peripheral administration of a nitric oxide donor potentiates the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice.
Several works reveal that nitric oxide could enhance the peripheral antinociception induced by opioids during acute inflammation. Nonetheless, the role of nitric oxide in the local antinociceptive effects of delta-opioid receptor (DOR) agonists during chronic peripheral inflammation is not known. The aim of this study is to evaluate whether nitric oxide would enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain in mice. Chronic inflammatory pain was induced by the subplantar administration of complete Freund's adjuvant (CFA; 30 microl) and thermal hyperalgesia assessed by plantar test. In C57BL/6J mice, we evaluated the local antinociceptive effects of a DOR agonist, [D-Pen2,5]-enkephalin (DPDPE) and a nitric oxide donor, DETA NONOate DETA/NO 2,2'-(hydroxynitrosohydrazino) Bis-Ethanamine (NOC-18) alone or combined (DPDPE plus NOC-18) at 1, 4, 7, and 10 days after CFA injection. The reversibility of the peripheral antinociceptive effects of DPDPE, alone or combined with NOC-18, was assessed with the local administration of selective (naltrindole) and non-selective (naloxone methiodide) DOR antagonists. The local administration of DPDPE or NOC-18 alone dose-dependently inhibited the thermal hyperalgesia induced by peripheral inflammation. Moreover, the co-administration of NOC-18 with DPDPE significantly increased the antinociceptive effects produced by DPDPE from 1 to 10 days of CFA-induced inflammatory pain (P < 0.05). These effects were completely blocked by naltrindole and naloxone methiodide. Our results demonstrate that nitric oxide might enhance the local antinociceptive effects of a DOR agonist during chronic inflammatory pain by interaction with peripheral DOR, representing a useful strategy for an efficient antinociceptive treatment of peripheral inflammatory pain. Topics: Analgesics, Opioid; Animals; Chronic Disease; Disease Models, Animal; Drug Therapy, Combination; Enkephalin, D-Penicillamine (2,5)-; Freund's Adjuvant; Hot Temperature; Hyperalgesia; Inflammation; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Pain Measurement; Receptors, Opioid, delta; Time Factors | 2009 |
Involvement of kappa opioid receptors in formalin-induced inhibition of analgesic tolerance to morphine in mice.
This study examined the role of kappa opioid receptors (KOR) in the mechanism underlying tolerance to the analgesic effects of morphine induced by chronic pain. The analgesic effect of morphine (10 mg kg(-1)), estimated by the tail-flick test in mice, gradually decreased during repeated daily morphine treatment. A significant decrease in the analgesic effect of morphine was seen on the fifth day of repeated morphine treatment compared with the first day. Chronic pain was induced by subcutaneous administration of 2% formalin into the dorsal part of the left hind paw, which significantly inhibited development of tolerance to morphine analgesia. The effect of formalin-induced pain on inhibition of morphine tolerance was reversed by the KOR antagonist nor-binaltorphimine. Furthermore, an antisense oligodeoxynucleotide, but not a missense oligodeoxynucleotide, against KOR completely suppressed the inhibitory effect of formalin-induced pain on morphine tolerance. Naltrindole, an antagonist of delta opioid receptor, did not affect chronic-pain-induced tolerance to morphine. Our findings show that the inhibitory effect of chronic pain on analgesic tolerance to morphine is mediated by KOR rather than delta opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Chronic Disease; Drug Tolerance; Formaldehyde; Male; Mice; Morphine; Naltrexone; Oligonucleotides, Antisense; Pain; Pain Measurement; Pain Threshold; Receptors, Opioid, delta; Receptors, Opioid, kappa; Tail | 2007 |
Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala.
Clinically, it has been reported that chronic pain induces depression, anxiety, and reduced quality of life. The endogenous opioid system has been implicated in nociception, anxiety, and stress. The present study was undertaken to investigate whether chronic pain could induce anxiogenic effects and changes in the opioidergic function in the amygdala in mice. We found that either injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by sciatic nerve ligation produced a significant anxiogenic effect at 4 weeks after the injection or surgery. Under these conditions, the selective mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAMGO)- and the selective delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)-stimulated [35S]GTPgammaS binding in membranes of the amygdala was significantly suppressed by CFA injection or nerve ligation. CFA injection was associated with a significant increase in the kappa-opioid receptor agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride (ICI199,441)-stimulated [35S]GTPgammaS binding in membranes of the amygdala. The intracerebroventricular administration and microinjection of a selective mu-opioid receptor antagonist, a selective delta-opioid receptor antagonist, and the endogenous kappa-opioid receptor ligand dynorphin A caused a significant anxiogenic effect in mice. We also found that thermal hyperalgesia induced by sciatic nerve ligation was reversed at 8 weeks after surgery. In the light-dark test, the time spent in the lit compartment was not changed at 8 weeks after surgery. Collectively, the present data constitute the first evidence that chronic pain has an anxiogenic effect in mice. This phenomenon may be associated with changes in opioidergic function in the amygdala. Topics: Amygdala; Analgesics, Opioid; Analysis of Variance; Animals; Anxiety; Behavior, Animal; Benzamides; Chronic Disease; Diazepam; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Freund's Adjuvant; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Intraventricular; Male; Maze Learning; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pain Measurement; Piperazines; Protein Binding; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reaction Time; Sciatica; Somatostatin; Sulfur Isotopes; Time Factors; Tranquilizing Agents | 2006 |
Chronic pain-induced emotional dysfunction is associated with astrogliosis due to cortical delta-opioid receptor dysfunction.
It has been widely recognized that chronic pain could cause physiological changes at supraspinal levels. The delta-opioidergic system is involved in antinociception, emotionality, immune response and neuron-glia communication. In this study, we show that mice with chronic pain exhibit anxiety-like behavior and an increase of astrocytes in the cingulate cortex due to the dysfunction of cortical delta-opioid receptor systems. Using neural stem cells cultured from the mouse embryonic forebrain, astrocyte differentiation was clearly observed following long-term exposure to the selective delta-opioid receptor antagonist, naltrindole. We also found that micro-injection of either activated astrocyte or astrocyte-conditioned medium into the cingulate cortex of mice aggravated the expression of anxiety-like behavior. Our results indicate that the chronic pain process promotes astrogliosis in the cingulate cortex through the dysfunction of cortical delta-opioid receptors. This phenomenon may lead to emotional disorders including aggravated anxiety under chronic pain-like state. Topics: Animals; Anxiety Disorders; Astrocytes; Brain Tissue Transplantation; Cells, Cultured; Cerebral Cortex; Chronic Disease; Culture Media, Conditioned; Disease Models, Animal; Gliosis; Gyrus Cinguli; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Neuralgia; Pain, Intractable; Peripheral Nervous System Diseases; Receptors, Opioid, delta; Sciatic Neuropathy; Stem Cells | 2006 |
Role of the kappa-opioid system in the attenuation of the morphine-induced place preference under chronic pain.
We previously reported that the morphine-induced place preference was attenuated under inflammation produced by the unilateral injection of 2.5 % formalin (50 microl) into the hind paw of rats. In the present study, to elucidate the mechanism of this attenuation, the effects of pretreatment with delta- and kappa-opioid receptor antagonists, naltrindole (NTI) and nor-binaltorphimine (nor-BNI), on the development of the morphine-induced place preference under inflammation were examined in rats. Nor-BNI, but not NTI, eliminated the suppression of the morphine-induced place preference in inflamed groups. These results suggest that endogenous kappa-opioid systems may be activated in the presence of chronic inflammatory nociception; as a result, the development of morphine's rewarding effect may be suppressed under inflammation. Topics: Animals; Chronic Disease; Conditioning, Psychological; Formaldehyde; Hindlimb; Inflammation; Male; Morphine; Naltrexone; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Reward; Time Factors | 1999 |
Evidence that spinal endogenous opioidergic systems control the expression of chronic pain-related behaviors in spinally injured rats.
We have previously reported that ischemic spinal cord injury in rats leads to chronic pain-related behaviors. Thus, rats exhibited aversive reactions to innocuous mechanical stimuli (mechanical allodynia) applied to a body area at or rostral to the dermatomes innervated by the injured spinal segments. The responses of the rats to cold are also markedly enhanced (cold allodynia). Interestingly, more than 50% of spinally injured rats did not develop these abnormal pain-related behaviors after spinal cord injury. In the present study, we showed that the extent of injury is similar between allodynic and non-allodynic rats. Furthermore, intrathecal (i.t.) naloxone, a broad-spectrum opioid receptor antagonist, reversibly provoked mechanical and cold allodynia-like responses in spinally injured rats that did not develop such behaviors spontaneously. However, naloxone did not elicit such reactions in normal rats and did not alter the tail-flick latency in normal or spinally injured rats. Furthermore, i.t. D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) or naltridole, selective antagonists of mu and delta opioid receptors, respectively, also triggered pain-related behaviors similarly to naloxone. Although norbinaltorphimine (nor-BIN), a selective kappa-receptor antagonist, also elicited such responses, the time course of the effect makes it unlikely that spinal kappa-receptors were involved. These results suggested that the expression of abnormal pain-related behaviors in some spinally injured rats is tonically suppressed by the spinal opioidergic system. Interindividual differences that lead to lack or dysfunction of such inhibition may underly the appearence of pain-related behavior in some, but not all, spinally injured rats. It is suggested that such inhibition is exerted through spinal mu and delta, but not kappa, opioid receptors. The endogenous opioidergic control appears to be only active against abnormal painrelated behaviors in spinally injured rats. Our results are relevant for the clinical observation that only a subgroup of patients with nerve injury suffers from neuropathic pain. Topics: Animals; Behavior, Animal; Chronic Disease; Cold Temperature; Female; Hyperalgesia; Injections, Spinal; Naltrexone; Narcotic Antagonists; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Self Mutilation; Somatostatin; Spinal Cord Injuries; Stress, Mechanical | 1998 |