naltrexone has been researched along with Parkinson Disease, Secondary in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (75.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bédard, PJ; Grégoire, L; Samadi, P | 1 |
Brotchie, JM; Crossman, AR; Maneuf, YP; Mitchell, IJ; Woodruff, GN | 1 |
Flumerfelt, BA; Newman, DD; Rajakumar, N; Stoessl, AJ | 1 |
Brotchie, JM; Hill, MP | 1 |
4 other study(ies) available for naltrexone and Parkinson Disease, Secondary
Article | Year |
---|---|
Opioid antagonists increase the dyskinetic response to dopaminergic agents in parkinsonian monkeys: interaction between dopamine and opioid systems.
Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Benzazepines; Dopamine; Dopamine Agents; Dopamine Agonists; Dyskinesia, Drug-Induced; Endorphins; Female; Levodopa; Macaca fascicularis; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Parkinson Disease, Secondary; Quinpirole; Receptors, Dopamine D1; Receptors, Dopamine D2; Synaptic Transmission | 2003 |
Functional implications of kappa opioid receptor-mediated modulation of glutamate transmission in the output regions of the basal ganglia in rodent and primate models of Parkinson's disease.
Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Anti-Arrhythmia Agents; Basal Ganglia; Benzofurans; Callithrix; Female; Glutamic Acid; In Vitro Techniques; Male; Motor Activity; Naltrexone; Parkinson Disease, Secondary; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reserpine; Synaptic Transmission | 1995 |
A kappa opioid antagonist blocks sensitization in a rodent model of Parkinson's disease.
Topics: Animals; Apomorphine; Functional Laterality; Hippocampus; Infusions, Parenteral; Levodopa; Male; Motor Activity; Naltrexone; Narcotic Antagonists; Parkinson Disease, Secondary; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Rotation | 1997 |
The adrenergic receptor agonist, clonidine, potentiates the anti-parkinsonian action of the selective kappa-opioid receptor agonist, enadoline, in the monoamine-depleted rat.
Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Antiparkinson Agents; Benzofurans; Biogenic Monoamines; Clonidine; Disease Models, Animal; Drug Combinations; Drug Synergism; Locomotion; Male; Naltrexone; Narcotic Antagonists; Parkinson Disease, Secondary; Prazosin; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reserpine; Yohimbine | 1999 |