naloxone and Visceral-Pain

naloxone has been researched along with Visceral-Pain* in 10 studies

Other Studies

10 other study(ies) available for naloxone and Visceral-Pain

ArticleYear
Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome.
    Scientific reports, 2019, 12-20, Volume: 9, Issue:1

    Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and gut hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is a rat irritable bowel syndrome (IBS) model. As butyrate is known to suppress the release of proinflammatory cytokine, we hypothesized that butyrate alleviates these colonic changes in IBS models. The visceral pain was assessed by electrophysiologically measuring the threshold of abdominal muscle contractions in response to colonic distention. Colonic permeability was determined by measuring the absorbance of Evans blue in colonic tissue. Colonic instillation of sodium butyrate (SB; 0.37-2.9 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral allodynia and colonic hyperpermeability dose-dependently. Additionally, the visceral changes induced by repeated WAS (1 h for 3 days) or CRF (50 µg/kg) were also blocked by SB. These effects of SB in the LPS model were eliminated by compound C, an AMPK inhibitor, or GW9662, a PPAR-γ antagonist, N

    Topics: Animals; Butyrates; Colon; Disease Models, Animal; Electrodes; Hyperalgesia; Inflammation; Irritable Bowel Syndrome; Lipopolysaccharides; Male; Naloxone; Permeability; Rats; Rats, Sprague-Dawley; Sulpiride; Visceral Pain

2019
Understanding nociception-related phenotypes in adult zebrafish: Behavioral and pharmacological characterization using a new acetic acid model.
    Behavioural brain research, 2019, 02-01, Volume: 359

    Pain, a severely debilitating symptom of many human disorders, is a growing, unmet biomedical problem. Although the use of zebrafish (Danio rerio) to investigate both behavioral and physiological nociception-related responses is expanding rapidly, the characterization of behavioral phenotypes that reflect injury location is limited, making the results of such studies difficult to interpret. Here, we characterize putative nociception-related behavioral phenotypes in adult zebrafish following an intraperitoneal (i.p.) administration of acetic acid, a well-established protocol for visceral pain in rodents. Acetic acid (2.5 and 5.0%) induced an abdominal constriction-like response, which was assessed by measuring a body curvature index. Moreover, all doses tested (0.5-5.0%) reduced distance traveled and vertical activity in the novel tank test. Freezing duration increased following 5.0% acetic acid, whereas fish injected with 1.0, 2.5, and 5.0% spent more time in top area of the tank. Both morphine (an opioid analgesic) and diclofenac (a nonsteroidal anti-inflammatory drug, NSAID) prevented the 5.0% acetic acid-induced changes in body curvature index, whereas naloxone blocked these effects of morphine. Overall, zebrafish exposed to a single acetic acid i.p. injection display abnormal body curvature and specific changes in behavioral parameters sensitive to anti-nociceptive pharmacological modulation. We suggest that the abdominal constriction-like response represents a novel specific nociceptive-related phenotype in zebrafish. In general, our findings support the growing utility of zebrafish in translational pain research and antinociceptive drug discovery.

    Topics: Acetic Acid; Analgesics, Opioid; Animals; Animals, Outbred Strains; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Diclofenac; Disease Models, Animal; Drug Discovery; Drug Interactions; Female; Male; Morphine; Naloxone; Narcotic Antagonists; Nociception; Posture; Random Allocation; Visceral Pain; Zebrafish

2019
Naloxone prolongs abdominal constriction writhing-like behavior in a zebrafish-based pain model.
    Neuroscience letters, 2019, 08-24, Volume: 708

    The ability to detect noxious stimuli is essential to survival. However, pathological pain is maladaptive and severely debilitating. Endogenous and exogenous opioids modulate pain responses via opioid receptors, reducing pain sensibility. Due to the high genetic and physiological similarities to rodents and humans, the zebrafish is a valuable tool to assess pain responses and the underlying mechanisms involved in nociception. Although morphine attenuates pain-like responses of zebrafish, there are no data showing if the antagonism of opioid receptors prolongs pain duration in the absence of an exogenous opioid. Here, we investigated whether a common opioid antagonist naloxone affects the abdominal constriction writhing-like response, recently characterized as a zebrafish-based pain behavior. Animals were injected intraperitoneally with acetic acid (5.0%), naloxone (1.25 mg/kg; 2.5 mg/kg; 5.0 mg/kg) or acetic acid with naloxone to investigate the changes in their body curvature for 1 h. Acetic acid elicited a robust pain-like response in zebrafish, as assessed by aberrant abdominal body curvature, while no effects were observed following PBS injection. Although naloxone alone did not alter the frequency and duration of this behavior, it dose-dependently prolonged acetic acid-induced abdominal curvature response. Besides reinforcing the use of the abdominal writhing-like phenotype as a behavioral endpoint to measure acute pain responses in zebrafish models, our novel data suggest a putative role of endogenous opioids in modulating the recovery from pain stimulation in zebrafish.

    Topics: Abdomen; Acetic Acid; Animals; Behavior, Animal; Constriction, Pathologic; Disease Models, Animal; Naloxone; Narcotic Antagonists; Pain; Visceral Pain; Zebrafish

2019
Opioid Receptors Contribute to Antinociceptive Effect of Tianeptine on Colorectal Distension-Induced Visceral Pain in Rats.
    Pharmacology, 2018, Volume: 101, Issue:1-2

    Tianeptine is a clinically effective atypical antidepressant with distinct neurochemical properties. In this study, we aimed to investigate the contribution of opioid receptors in the antinociceptive effect of tianeptine on visceral pain in awake rats and to differentiate the subtype and the localization (central and/or peripheral) of these opioid receptors involved in this antinociception. Visceromotor response to noxious colorectal distension (CRD) was quantified with electromyographic recordings, obtained from previously implanted electrodes into the external oblique musculature of rats under anesthesia, before and after tianeptine administration. The opioid receptor antagonist naloxone hydrochloride (NLX) and peripherally restricted opioid receptor antagonist naloxone methiodide (NLXM) were administered intravenously 10 min before tianeptine (10 mg/kg, i.v.). The antinociceptive effect of tianeptine was abolished by NLX (1 and 2 mg/kg, i.v.), but was partially reduced by NLXM (1 and 2 mg/kg, i.v.). A µ-opioid receptor-selective dose (0.03 mg/kg, i.v.) of NLX, but not NLXM, significantly inhibited the antinociceptive effect of tianeptine. Our results suggest that antinociceptive effect of tianeptine on CRD-induced visceral nociception in rats involves the activation of both central and peripheral opioid receptors.

    Topics: Analgesics; Animals; Antidepressive Agents; Colon; Male; Naloxone; Narcotic Antagonists; Rats, Sprague-Dawley; Receptors, Opioid; Rectum; Thiazepines; Visceral Pain

2018
Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain.
    European journal of pharmacology, 2016, May-15, Volume: 779

    This study aimed to investigate the involvement of opioid receptors in the systemic and peripheral antinociceptive activities of montelukast in different animal models of pain. Rats and mice were injected with montelukast to produce analgesia. The formalin and acetic acid-induced writhing tests were used to assess the nociceptive activity. The results showed that i.p. administration of montelukast (0.3-10mg/kg) dose-dependently reduced flinching behavior in both the first and second phases of formalin test with mean ED50 of 0.55 and 5.31mg/kg, respectively. Also, intraplantar administration of montelukast (3-30μg/paw) produced antinociception against the two phases of formalin assay in a dose-dependent way with mean ED30 of 2.92 and 8.11μg/paw, respectively. Furthermore, pre-treatment with naloxone (a non-selective opioid receptor antagonist) significantly inhibited both the systemic and also peripheral antinociceptive actions of montelukast in formalin test. In writhing test, the results showed that intraperitoneal administration of montelukast (3-10mg/kg) significantly reduced the writhe number induced by acetic acid in mice. Moreover, co-administration of non-effective doses of montelukast (0.3 and 1mg/kg; i.p.) and morphine (0.25mg/kg; i.p.) significantly decreased the writhes number induced by acetic acid. Also, this effect was naloxone-reversible. These findings suggest that the systemic and peripheral antinociception produced by montelukast were mediated through the opioid receptors in central and peripheral nervous systems. Moreover, combination of montelukast and morphine could be noted as a new strategy for pain relief.

    Topics: Acetates; Acetic Acid; Analgesics; Animals; Behavior, Animal; Cyclopropanes; Disease Models, Animal; Drug Synergism; Formaldehyde; Male; Mice; Naloxone; Pain; Quinolines; Rats; Receptors, Opioid; Sulfides; Visceral Pain

2016
Acute sacral nerve stimulation reduces visceral mechanosensitivity in Rat through spinal opioid pathway.
    Neurogastroenterology and motility, 2015, Volume: 27, Issue:6

    Sacral nerve stimulation (SNS) is an alternative surgical treatment of refractory urge incontinence and/or fecal incontinence. Despite its clinical efficacy, the mechanisms of action of SNS remain poorly understood. The aim of this experimental study was to evaluate the effect of SNS on visceral mechanosensitivity in rats.. Anesthetized Sprague-Dawley rats were treated with SNS or sham stimulation. SNS was performed by implanting an electrode close to the sacral nerve root S1. Rats were administered either a non-selective opioid receptor antagonist (naloxone) or a nitric oxide synthase inhibitor (L-NAME). Colonic mechanosensitivity was evaluated using the variation of arterial blood pressure as a spino-bulbar reflex in response to graded isobaric colorectal distension (CRD). C-fos immunoreactive neurons were quantified in spinal and supraspinal sites. μ-opioid receptor (MOR) internalization was counted in the sacral spinal cord with sham or effective SNS in response to CRD.. SNS reduced visceral mechanosensitivity in response to CRD. This effect was reversed by intrathecal and intraveinous naloxone administration. In both models, CRD induced increased c-fos immunoreactivity in the dorsal horn neurons of the sacral spinal cord and supraspinal areas. This increase was prevented by SNS. MOR internalization was significantly higher in stimulated group.. SNS impacts on visceral mechanosensitivity by decreasing the spino-bulbar reflex in response to CRD. Spinal opioid receptors are likely involved in this effect.

    Topics: Animals; Arterial Pressure; Colon; Dilatation; Electric Stimulation; Enzyme Inhibitors; Hyperalgesia; Lumbosacral Plexus; Naloxone; Narcotic Antagonists; Neurons; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, mu; Reflex; Sacrococcygeal Region; Sensory Thresholds; Spinal Cord; Visceral Pain

2015
Effects of herpes simplex virus vector-mediated enkephalin gene therapy on bladder overactivity and nociception.
    Human gene therapy, 2013, Volume: 24, Issue:2

    We previously reported the effects of herpes simplex virus (HSV) vector-mediated enkephalin on bladder overactivity and pain. In this study, we evaluated the effects of vHPPE (E1G6-ENK), a newly engineered replication-deficient HSV vector encoding human preproenkephalin (hPPE). vHPPE or control vector was injected into the bladder wall of female rats 2 weeks prior to the following studies. A reverse-transcription PCR study showed high hPPE transgene levels in L6 dorsal root ganglia innervating the bladder in the vHPPE group. The number of freezing behaviors, which is a nociceptive reaction associated with bladder pain, was also significantly lower in the vHPPE group compared with the control group. The number of L6 spinal cord c-fos-positive cells and the urinary interleukin (IL)-1β and IL-6 levels after resiniferatoxin (RTx) administration into the bladder of the vHPPE group were significantly lower compared with those of the control vector-injected group. In continuous cystometry, the vHPPE group showed a smaller reduction in intercontraction interval after RTx administration into the bladder. This antinociceptive effect was antagonized by naloxone hydrochloride. Thus, the HSV vector vHPPE encoding hPPE demonstrated physiological improvement in visceral pain induced by bladder irritation. Gene therapy may represent a potentially useful treatment modality for bladder hypersensitive disorders such as bladder pain syndrome/interstitial cystitis.

    Topics: Analgesics; Animals; Diterpenes; Enkephalins; Female; Ganglia, Spinal; Gene Transfer Techniques; Genetic Therapy; Genetic Vectors; Interleukin-1beta; Interleukin-6; Naloxone; Nociception; Protein Precursors; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Simplexvirus; Urinary Bladder; Urinary Bladder, Overactive; Urinary Catheterization; Virus Replication; Visceral Pain

2013
The central versus peripheral antinociceptive effects of μ-opioid receptor agonists in the new model of rat visceral pain.
    Brain research bulletin, 2012, Feb-10, Volume: 87, Issue:2-3

    This study describes the antinociceptive effects of μ-opioid agonists, d-Ala(2),N-Me-Phe(4),Gly(5)-ol-enkephalin (DAMGO) and morphine in a model of rat visceral pain in which nociceptive responses were triggered by 2% acetic acid intraperitoneal (i.p.) injections. DAMGO and morphine were administered i.p., to the same site where acetic acid was delivered or intracerebroventricularly (i.c.v.). The antinociceptive actions of i.p. versus i.c.v. administered DAMGO or morphine were evaluated in the late phase of permanent visceral nociceptive responses. Both compounds inhibited the nociceptive responses in a dose-dependent manner and exhibited more potent agonist activity after i.c.v. than i.p. administration. DAMGO and morphine showed comparable ED(50) values after i.p. injections. However, DAMGO was much stronger than morphine after central administration. Co-administration of the peripherally restricted opioid antagonist, naloxone methiodide (NAL-M), significantly attenuated the antinociceptive effects of i.p. DAMGO or morphine. On the other hand, i.c.v. injections of NAL-M partially antagonized the antinociceptive effect of i.p. morphine and failed to affect the antinociceptive action of i.p. DAMGO indicating the partial and pure peripheral antinociceptive effects of morphine and DAMGO, respectively. These results suggest the role of either central or peripheral μ-opioid receptors (MOR) in mediating antinociceptive effects of i.p. μ-opioid agonists in the rat late permanent visceral pain model which closely resembles the clinical situation.

    Topics: Acetic Acid; Analgesics, Opioid; Analysis of Variance; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Morphine; Naloxone; Narcotic Antagonists; Quaternary Ammonium Compounds; Rats; Visceral Pain

2012
Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model.
    Peptides, 2012, Volume: 37, Issue:1

    Apelin, as the endogenous ligand of the APJ receptor, is a novel identified neuropeptide whose biological functions are not fully understood. APJ receptor mRNA was found in several brain regions related to descending control system of pain, such as amygdala, hypothalamus and dorsal raphe nucleus (DRN). The present study was designed to determine whether supraspinal apelin-13 may produce antinociceptive effect observed in the acetic acid-induced writhing test, a model of visceral pain. Apelin-13 not only significantly produced preemptive antinociception at the dose of 0.3, 0.5, 1 and 3 μg/mouse when injected intracerebroventricularly (i.c.v.) before acetic acid, but also significantly induced antinociception at a dose of 0.5, 1 and 3 μg/mouse when injected i.c.v. after acetic acid. And i.c.v. apelin-13 did not influence 30-min locomotor activity counts in mice. Intrathecal (i.t.) administration of apelin-13 (1 and 3 μg/mouse) significantly decreased the number of writhes, however, intraperitoneal (i.p.) injection of apelin-13 (10-100 μg/mouse) had no effect on the number of writhes in the writhing test. The specific APJ receptor antagonist apelin-13(F13A), no-specific opioid receptor antagonist naloxone and μ-opioid receptor antagonist β-funaltrexamine hydrochloride (β-FNA) could significantly antagonize the antinociceptive effect of i.c.v. apelin-13, suggesting APJ receptor and μ-opioid receptor are involved in this process. Central low dose of apelin-13 (0.3 μg/mouse, i.c.v.) could significantly potentiate the analgesic potencies of modest and even relatively ineffective doses of morphine administrated at supraspinal level. This enhanced antinociceptive effect was reversed by naloxone, suggesting that the potentiated analgesic response is mediated by opioid-responsive neurons.

    Topics: Acetic Acid; Analgesics; Analgesics, Opioid; Animals; Drug Synergism; Injections, Intraperitoneal; Injections, Intraventricular; Injections, Spinal; Intercellular Signaling Peptides and Proteins; Male; Mice; Morphine; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Nociception; Visceral Pain

2012
Visceral analgesia induced by acute and repeated water avoidance stress in rats: sex difference in opioid involvement.
    Neurogastroenterology and motility, 2012, Volume: 24, Issue:11

    Chronic psychological stress-induced alterations in visceral sensitivity have been predominantly assessed in male rodents. We investigated the effect of acute and repeated water avoidance stress (WAS) on the visceromotor response (VMR) to colorectal distension (CRD) and the role of opioids in male and cycling female Wistar rats using a novel non-invasive manometric technique.. After a baseline VMR (1st CRD, day 0), rats were exposed to WAS (1 h day(-1) ) either once or for four consecutive days, without injection or with naloxone (1 mg kg(-1) ) or saline injected subcutaneously before each WAS session.. The VMR to CRD recorded on day 1 or 4 immediately after the last WAS was reduced in both females and males. The visceral analgesia was mainly naloxone-dependent in females, but naloxone-independent in males. In non-injected animals, on days 2 and 5, VMR was not significantly different from baseline in males whereas females exhibited a significant VMR increase at 60 mmHg on day 5. Basal CRD and CRD on days 1, 2, and 5 in both sexes without WAS induced similar VMR..   When monitored non-invasively, psychological stress induces an immediate poststress visceral analgesia mediated by an opiate signaling system in females while naloxone-independent in males, and hyperalgesia at 24 h after repeated stress only in females. These data highlight the importance of sex-specific interventions to modulate visceral pain response to stress.

    Topics: Analgesics, Opioid; Animals; Colon; Female; Hyperalgesia; Male; Manometry; Myoelectric Complex, Migrating; Naloxone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid; Rectum; Sex Characteristics; Stress, Psychological; Visceral Pain

2012