Page last updated: 2024-08-17

nad and Weight Gain

nad has been researched along with Weight Gain in 15 studies

Research

Studies (15)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (20.00)18.2507
2000's7 (46.67)29.6817
2010's5 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Dugu, H; Gil, SY; Kang, GM; Kim, HJ; Kim, MS; Lee, CH; Park, JW; Roh, E; Son, GH; Song, DK; Yu, R1
Boulangé, CL; Chou, CJ; Claus, SP; Collino, S; Dumas, ME; Holmes, E; Kochhar, S; Martin, FP; Montoliu, I; Nicholson, JK; Rezzi, S1
Drew, JE; Farquharson, AJ; Horgan, GW; Williams, LM1
Cai, W; Feng, J; Gao, G; Gong, B; Li, L; Li, Q; Ou, Z; Qi, W; Yang, X; Yang, Z; Zhao, A; Zhao, Z; Zhong, J; Zhou, T1
Andreux, PA; Auwerx, J; Cantó, C; Cen, Y; Cettour-Rose, P; Fernandez-Marcos, PJ; Gademann, K; Houtkooper, RH; Oosterveer, MH; Pirinen, E; Rinsch, C; Sauve, AA; Schoonjans, K; Yamamoto, H; Youn, DY1
Fukuwatari, T; Morikawa, Y; Shibata, K; Sugimoto, E1
Fukuwatari, T; Shibata, K; Sugimoto, E2
Fukuwatari, T; Sasaki, R; Shibata, K; Wada, H1
Egashira, Y; Nagaki, S; Sanada, H1
Egashira, Y; Sanada, H; Sato, M; Shin, M; Sugawara, R; Tanabe, A1
Kirkland, JB; Thorn, SL; Young, GS1
Baker, DH; Oduho, GW1
Henning, SM; Swendseid, ME; Zhang, JZ1
Kondo, T; Marugami, M; Shibata, K; Umezawa, C1

Other Studies

15 other study(ies) available for nad and Weight Gain

ArticleYear
Exogenous nicotinamide adenine dinucleotide regulates energy metabolism via hypothalamic connexin 43.
    Metabolism: clinical and experimental, 2018, Volume: 88

    Topics: Agouti-Related Protein; Animals; Biological Transport; Connexin 43; Energy Metabolism; Hyperphagia; Hypothalamus; Injections, Intraperitoneal; Injections, Intraventricular; Male; Mice, Inbred C57BL; NAD; Neurons; Neuropeptide Y; Sirtuin 1; Transcription, Genetic; Weight Gain

2018
Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways.
    Journal of proteome research, 2013, Apr-05, Volume: 12, Issue:4

    Topics: Adaptation, Physiological; Animals; Diet, High-Fat; Female; Hemiterpenes; Keto Acids; Magnetic Resonance Spectroscopy; Mice; Mice, Inbred C57BL; Mitochondria; NAD; Obesity; Oxidation-Reduction; Succinic Acid; Urine; Weight Gain

2013
Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding.
    The Journal of nutritional biochemistry, 2016, Volume: 37

    Topics: Adipose Tissue, White; Adiposity; Animals; Biomarkers; Diet, High-Fat; Gene Expression Regulation, Enzymologic; Glucose Intolerance; Liver; Male; Mice, Inbred C57BL; Mitochondrial Proteins; Muscle, Skeletal; NAD; Nicotinamide N-Methyltransferase; Obesity; Organ Specificity; Principal Component Analysis; Sirtuins; Tryptophan Oxygenase; Weight Gain

2016
IL-25 stimulates M2 macrophage polarization and thereby promotes mitochondrial respiratory capacity and lipolysis in adipose tissues against obesity.
    Cellular & molecular immunology, 2018, Volume: 15, Issue:5

    Topics: 3T3-L1 Cells; Adenosine Triphosphate; Adipose Tissue; Adipose Tissue, White; Animals; Body Mass Index; Cell Polarity; Cell Respiration; Eating; Humans; Interleukin-17; Lipolysis; Liver; Macrophage Activation; Macrophages; Male; Mice; Mice, Inbred C57BL; Mitochondria; Models, Biological; NAD; Non-alcoholic Fatty Liver Disease; Obesity; Oxygen Consumption; RNA, Messenger; Weight Gain

2018
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity.
    Cell metabolism, 2012, Jun-06, Volume: 15, Issue:6

    Topics: Acetylation; Adipose Tissue, Brown; Animals; Brain; Diet, High-Fat; Dietary Supplements; Electron Transport Complex I; Energy Metabolism; HEK293 Cells; Humans; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; NAD; Niacinamide; Obesity; Organ Specificity; Oxidation-Reduction; Oxygen Consumption; Protein Processing, Post-Translational; Pyridinium Compounds; Receptors, G-Protein-Coupled; Receptors, Nicotinic; Sirtuin 1; Sirtuin 3; Superoxide Dismutase; Weight Gain

2012
Effects of fatty liver induced by niacin-free diet with orotic acid on the metabolism of tryptophan to niacin in rats.
    Bioscience, biotechnology, and biochemistry, 2002, Volume: 66, Issue:6

    Topics: Animals; Diet; Fats; Fatty Liver; Feeding Behavior; Liver; Male; NAD; NADP; Niacin; Organ Size; Orotic Acid; Quinolinic Acid; Rats; Rats, Wistar; Tryptophan; Vitamin B Deficiency; Weight Gain

2002
Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity.
    Bioscience, biotechnology, and biochemistry, 2002, Volume: 66, Issue:7

    Topics: Animals; Antitubercular Agents; Carboxy-Lyases; Diet; Eating; Injections, Intraperitoneal; Kidney; Kynurenic Acid; Liver; Male; NAD; Niacin; Pyrazinamide; Rats; Rats, Wistar; Tryptophan; Weight Gain; Xanthurenates

2002
Effects of excess nicotinamide administration on the urinary excretion of nicotinamide N-oxide and nicotinuric acid by rats.
    Bioscience, biotechnology, and biochemistry, 2004, Volume: 68, Issue:1

    Topics: Animals; Dose-Response Relationship, Drug; Eating; Liver; Male; NAD; NADP; Niacinamide; Nicotinic Acids; Predictive Value of Tests; Quinolinic Acid; Rats; Rats, Wistar; Tryptophan; Weaning; Weight Gain

2004
Tryptophan-niacin metabolism in rat with puromycin aminonucleoside-induced nephrosis.
    International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 2006, Volume: 76, Issue:1

    Topics: Animals; Carboxy-Lyases; Kidney; Liver; Male; NAD; Nephrosis; Niacin; Niacinamide; Puromycin Aminonucleoside; Rats; Rats, Wistar; Serum Albumin; Tryptophan; Weight Gain

2006
Differential effects of pyrazinamide and clofibrate on gene expression of rat hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme of the tryptophan-NAD pathway.
    International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 2006, Volume: 76, Issue:3

    Topics: Analysis of Variance; Animals; Antitubercular Agents; Carboxy-Lyases; Clofibrate; Diet, Fat-Restricted; Diet, Protein-Restricted; Dose-Response Relationship, Drug; Gene Expression Regulation, Enzymologic; Hypolipidemic Agents; Kidney; Liver; Male; Models, Animal; NAD; Peroxisome Proliferators; Pyrazinamide; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Time Factors; Transcription, Genetic; Tryptophan; Weight Gain

2006
The guinea-pig is a poor animal model for studies of niacin deficiency and presents challenges in any study using purified diets.
    The British journal of nutrition, 2007, Volume: 98, Issue:1

    Topics: Animals; Bone Marrow; Caseins; Dietary Supplements; Disease Models, Animal; Gelatin; Guinea Pigs; Humans; Male; NAD; Niacin; Survival Analysis; Tryptophan; Weight Gain

2007
Quantitative efficacy of niacin sources for chicks: nicotinic acid, nicotinamide, NAD and tryptophan.
    The Journal of nutrition, 1993, Volume: 123, Issue:12

    Topics: Analysis of Variance; Animal Feed; Animals; Biological Assay; Chickens; Dose-Response Relationship, Drug; Eating; Liver; Male; Muscles; NAD; NADP; Niacin; Niacinamide; Regression Analysis; Tryptophan; Weight Gain

1993
Poly(ADP-ribose) polymerase activity and DNA strand breaks are affected in tissues of niacin-deficient rats.
    The Journal of nutrition, 1993, Volume: 123, Issue:8

    Topics: Animals; Body Weight; DNA Damage; Eating; Liver; Lung; Lymphocytes; Male; Muscles; NAD; Niacin; Poly(ADP-ribose) Polymerases; Rats; Rats, Sprague-Dawley; Spleen; Tryptophan; Vitamin B Deficiency; Weight Gain

1993
Increased conversion ratio of tryptophan to niacin by the administration of clofibrate, a hypolipidemic drug, to rats.
    Bioscience, biotechnology, and biochemistry, 1996, Volume: 60, Issue:9

    Topics: Animals; Clofibrate; Hypolipidemic Agents; Liver; Male; NAD; Niacin; Niacinamide; Rats; Rats, Wistar; Tryptophan; Weaning; Weight Gain

1996
Effects of dietary pyrazinamide, an antituberculosis agent, on the metabolism of tryptophan to niacin and of tryptophan to serotonin in rats.
    Bioscience, biotechnology, and biochemistry, 2001, Volume: 65, Issue:6

    Topics: Animals; Antitubercular Agents; Diet; Eating; Liver; Male; NAD; NADP; Niacin; Pyrazinamide; Quinolinic Acid; Rats; Rats, Wistar; Serotonin; Tryptophan; Weight Gain

2001