nad has been researched along with Electron Transport Chain Deficiencies, Mitochondrial in 38 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (2.63) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 7 (18.42) | 29.6817 |
2010's | 19 (50.00) | 24.3611 |
2020's | 11 (28.95) | 2.80 |
Authors | Studies |
---|---|
Chandel, NS; Mithal, DS | 1 |
Chen, W; Cong, L; Jiang, Y; Li, H; Sun, Y; Wang, H; Wang, Y; Xu, J; Yang, Q; Zhu, J | 1 |
Carolino, K; Devanneaux, L; Farre, JC; Subramani, S | 1 |
de Haas, R; Frambach, SJCM; Russel, FGM; Schirris, TJJ; Smeitink, JAM | 1 |
Adant, I; Bird, M; Cassiman, D; de Witte, P; Decru, B; Ghesquière, B; Rymen, D; Vermeersch, P; Wallays, M; Windmolders, P; Witters, P | 1 |
Chakraborty, S; Dey, P; Dutta, S; Mukherjee, P; Sarkar, A; Sur, M | 1 |
Cao, T; Ding, W; Fan, GC; Ji, X; Ni, R; Peng, T; Zhang, Z | 1 |
Escribano-Gonzalez, C; Favier, J; Goncalves, J; Hindshaw, RL; Kaul, B; Kľučková, K; Lavery, GG; Tearle, JLE; Tennant, DA; Thakker, A; Vettore, L | 1 |
Gorman, GS; Lightowlers, RN; Russell, OM; Turnbull, DM | 1 |
Xia, J; Xu, B; Zhao, N | 1 |
Kretzschmar, T; Schulze, PC; Wu, JMF | 1 |
Abramov, AY; Angelova, PR; Arber, C; Bhatia, KP; Duce, JA; Gout, I; Hardy, J; Houlden, H; Mazzacuva, F; Mills, K; Preza, E; Tsuchiya, Y; Wiethoff, S; Wray, S | 1 |
Carruba, MO; Corsetti, G; Nisoli, E; Ragni, M; Rossi, F; Ruocco, C; Tedesco, L; Valerio, A | 1 |
Krishnamurthy, S; Kumar, A; Narayan, G; Samaiya, PK | 1 |
Baur, JA; Botolin, P; Davila, A; Guan, Y; Mukherjee, S; Sims, CA; Singh, K | 1 |
Beyrath, J; Iannetti, EF; Koopman, WJH; Smeitink, JAM; Willems, PHGM | 1 |
Adams, S; Castellano-Gonzalez, G; Cole, NJ; Don, E; Guillemin, GJ; Jacobs, KR; Lim, CK; Lovejoy, DB | 1 |
Adanyeguh, I; Collins, B; Durr, A; Evans, RM; Fan, W; Ichou, F; Kinoshita, C; La Spada, AR; Mochel, F; Morrison, RS; Muotri, AR; Niu, C; Sopher, BL; Stoyas, CA; Switonski, PM; Wall, CE; Ward, JM | 1 |
Baldassarro, VA; Bergamini, C; Bianco, F; Bonora, E; Buscherini, F; Cordelli, DM; Diaz, R; Diquigiovanni, C; Fato, R; Liparulo, I; Masin, L; Paracchini, S; Pippucci, T; Rizzardi, N; Scarano, E; Seri, M; Tranchina, A; Wischmeijer, A | 1 |
Garcia-Menendez, L; Gong, G; Karamanlidis, G; Kolwicz, SC; Lee, CF; Morgan, PG; Sedensky, MM; Suthammarak, W; Tian, R; Wang, W | 1 |
Nicolson, GL | 1 |
Auwerx, J; Cerutti, R; Dantzer, F; Lamperti, C; Leoni, V; Li, W; Marchet, S; Pirinen, E; Sauve, AA; Schon, EA; Viscomi, C; Zeviani, M | 1 |
Choo, HJ; Hong, J; Kim, BW; Ko, YG; Lee, H; Lee, JS; Park, JJ; Yi, JS; Yoon, GS; Yu, DM | 1 |
Horn, P; Miles, L; Miles, MV; Rozhkov, L; Tenney, JR | 1 |
Cracan, V; Goodman, RP; Grabarek, Z; Mootha, VK; Peng, J; Titov, DV | 1 |
David, A; Guerra-Assunção, JA; Metherell, LA; Sternberg, MJ | 1 |
Fülöp, F; Klivényi, P; Toldi, J; Vámos, E; Vécsei, L; Zádori, D | 1 |
Alano, CC; Garnier, P; Higashi, Y; Kauppinen, TM; Swanson, RA; Ying, W | 1 |
Pandya, JD; Pettigrew, LC; Sullivan, PG | 1 |
Arduino, DM; Cardoso, SM; Esteves, AR; Oliveira, CR; Silva, DF | 1 |
Auwerx, J; Houtkooper, RH | 1 |
Fink, MP | 1 |
Copeland, WC; Dominick, OC; Graziewicz, MA; Longley, MJ; Strand, MK; Stuart, GR | 1 |
GONATAS, NK; SHY, GM | 1 |
Chance, B; Mayevsky, A | 1 |
Chen, Y; Clark, RS; Guo, F; Jenkins, LW; Kochanek, PM; Lai, Y; Nathaniel, PD; Szabó, C; Watkins, SC | 1 |
Bández, MJ; Boveris, A; Cadenas, E; Gómez, C; López-Cepero, JM; Navarro, A; Sánchez-Pino, MJ | 1 |
Cairns, CB | 1 |
5 review(s) available for nad and Electron Transport Chain Deficiencies, Mitochondrial
Article | Year |
---|---|
Mitochondrial Diseases: Hope for the Future.
Topics: Animals; DNA, Mitochondrial; Genetic Therapy; Genome, Mitochondrial; Humans; Mitochondria; Mitochondrial Diseases; Mutation; NAD; Reactive Oxygen Species | 2020 |
Mitochondrial Homeostasis Mediates Lipotoxicity in the Failing Myocardium.
Topics: Adipose Tissue; Calcium Signaling; Cardiomyopathies; Ceramides; Citric Acid Cycle; Disease Progression; Fatty Acids; Heart Failure; Homeostasis; Humans; Ketone Bodies; Mitochondria, Heart; Mitochondrial Diseases; Mitochondrial Dynamics; Mitophagy; NAD; Pericardium; Peroxisome Proliferator-Activated Receptors; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species | 2021 |
Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies.
Topics: Animals; Brain; Glutamic Acid; Humans; Kynurenic Acid; Mitochondrial Diseases; NAD; Neurodegenerative Diseases; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Quinolinic Acid; Tryptophan | 2009 |
Bench-to-bedside review: Cytopathic hypoxia.
Topics: Adenosine Triphosphate; Animals; Cell Respiration; Humans; Lipopolysaccharides; Mitochondrial Diseases; NAD; Oxidative Phosphorylation; Poly(ADP-ribose) Polymerases; Sepsis | 2002 |
Rude unhinging of the machinery of life: metabolic approaches to hemorrhagic shock.
Topics: Energy Metabolism; Humans; Ischemia; Mitochondria; Mitochondrial Diseases; Multiple Organ Failure; NAD; Oxygen Consumption; Reperfusion Injury; Shock, Hemorrhagic; Systemic Inflammatory Response Syndrome; Tumor Necrosis Factor-alpha | 2001 |
33 other study(ies) available for nad and Electron Transport Chain Deficiencies, Mitochondrial
Article | Year |
---|---|
The Gro3p factor: Restoring NAD+/NADH homeostasis to ameliorate mitochondrial disease.
Topics: Animals; Cytosol; Homeostasis; Mice; Mitochondria; Mitochondrial Diseases; NAD | 2021 |
NAD
Topics: Gene Regulatory Networks; Humans; Mitochondrial Diseases; NAD; Obesity; Oocytes; Sirtuin 3 | 2021 |
OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway.
Topics: Adenosine Triphosphate; Cell Proliferation; Genes, Fungal; Humans; Methanol; Mitochondrial Diseases; NAD; Oxidative Phosphorylation; Peroxisomes; Protein Serine-Threonine Kinases; Repressor Proteins; Saccharomycetales; Signal Transduction | 2022 |
Restoring cellular NAD(P)H levels by PPARα and LXRα stimulation to improve mitochondrial complex I deficiency.
Topics: ATP Binding Cassette Transporter 1; Cholesterol; Electron Transport Complex I; HeLa Cells; Humans; Liver X Receptors; Mitochondrial Diseases; NAD; PPAR alpha | 2022 |
Pyruvate and uridine rescue the metabolic profile of OXPHOS dysfunction.
Topics: Animals; Metabolome; Mitochondrial Diseases; NAD; Oxidative Phosphorylation; Pyruvic Acid; Rotenone; Uridine; Zebrafish | 2022 |
Early loss of endogenous NAD
Topics: Animals; Armadillo Domain Proteins; Drosophila melanogaster; Mitochondria; Mitochondrial Diseases; NAD; Poly(ADP-ribose) Polymerase Inhibitors; Rotenone | 2023 |
Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis.
Topics: Animals; Endothelial Cells; Inflammation; Mice; Mitochondrial Diseases; NAD; Nicotinamide Mononucleotide; Sepsis; Sirtuin 3 | 2023 |
Succinate dehydrogenase deficiency in a chromaffin cell model retains metabolic fitness through the maintenance of mitochondrial NADH oxidoreductase function.
Topics: Animals; Chromaffin Cells; Electron Transport Complex I; Humans; Male; Mice; Mice, Knockout; Mitochondria; Mitochondrial Diseases; Mutation; NAD; Neoplasms; Succinate Dehydrogenase; Transcriptome | 2020 |
Physical exercise may exert its therapeutic influence on Alzheimer's disease through the reversal of mitochondrial dysfunction via SIRT1-FOXO1/3-PINK1-Parkin-mediated mitophagy.
Topics: Adenosine Triphosphate; Alzheimer Disease; Amyloid beta-Peptides; Brain-Derived Neurotrophic Factor; Disease Progression; Exercise; Forkhead Box Protein O1; Humans; Mitochondria; Mitochondrial Diseases; Mitophagy; NAD; Niacinamide; Nicotinamide Mononucleotide; Protein Kinases; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; Ubiquitin-Protein Ligases | 2021 |
iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease.
Topics: Acetyl Coenzyme A; Adolescent; Biopsy; Brain; Cell Differentiation; Child; Coenzyme A; Female; Fibroblasts; Humans; Induced Pluripotent Stem Cells; Iron; Karyotyping; Lipid Peroxidation; Male; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Diseases; Mutation; NAD; Neurons; Pantothenate Kinase-Associated Neurodegeneration; Pantothenic Acid; Phenotype; Phosphotransferases (Alcohol Group Acceptor); Plasmids; Reactive Oxygen Species | 2017 |
A specific amino acid formula prevents alcoholic liver disease in rodents.
Topics: Alcohol Drinking; Amino Acids, Branched-Chain; Animals; Dietary Supplements; Disease Models, Animal; Energy Metabolism; Fatty Liver; Hep G2 Cells; Hepatocytes; Humans; Liver; Mitochondria; Mitochondrial Diseases; NAD; Nitric Oxide Synthase Type III; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species | 2018 |
2,4 Dinitrophenol Attenuates Mitochondrial Dysfunction and Improves Neurobehavioral Outcomes Postanoxia in Neonatal Rats.
Topics: 2,4-Dinitrophenol; Adenosine Triphosphate; Animals; Animals, Newborn; bcl-2-Associated X Protein; Caspases; Cyclin D1; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypoxia; Membrane Potential, Mitochondrial; Mental Disorders; Mitochondrial Diseases; NAD; Oxidative Stress; Oxidoreductases; Pregnancy; Rats; Succinate Dehydrogenase | 2018 |
Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock.
Topics: Acidosis, Lactic; Adenosine Triphosphate; Animals; Cytokines; Hepatocytes; Humans; Inflammation; Interleukin-6; Kidney; Liver; Male; Mitochondria; Mitochondrial Diseases; NAD; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Nicotinamide-Nucleotide Adenylyltransferase; Rats; Resuscitation; Shock, Hemorrhagic; Survival Analysis | 2018 |
Rescue from galactose-induced death of Leigh Syndrome patient cells by pyruvate and NAD
Topics: Adenosine Triphosphate; Aspartic Acid; Cell Death; Culture Media; Electron Transport Complex I; Fibroblasts; Galactose; Gene Expression; Glycolysis; Humans; Ketoglutaric Acids; Leigh Disease; Malates; Mitochondria; Mitochondrial Diseases; Mutation; NAD; NADH Dehydrogenase; Oxaloacetic Acid; Primary Cell Culture; Pyruvic Acid; Skin | 2018 |
Kynurenine 3-Monooxygenase Activity in Human Primary Neurons and Effect on Cellular Bioenergetics Identifies New Neurotoxic Mechanisms.
Topics: Adenosine Triphosphate; Brain; Cell Survival; HEK293 Cells; Humans; Kynurenic Acid; Kynurenine; Kynurenine 3-Monooxygenase; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Diseases; NAD; Neurons; Oxidative Stress; Primary Cell Culture; Quinolinic Acid; Reactive Oxygen Species | 2019 |
Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease.
Topics: Adipose Tissue; Animals; Ataxin-7; Blood Glucose; Energy Metabolism; Humans; Kynurenine; Metabolomics; Mice; Mitochondria; Mitochondrial Diseases; NAD; Neural Stem Cells; Organelles; Peptides; Phenotype; Purkinje Cells; Reproducibility of Results; Spinocerebellar Ataxias; Trinucleotide Repeat Expansion; Tryptophan | 2019 |
A novel mutation in
Topics: Calcium; Cell Cycle Proteins; Cell Line; Child; Electron Transport Complex I; Endosomes; Humans; Male; Mitochondria; Mitochondrial Diseases; Mutation; NAD; NADH Dehydrogenase; Neurodevelopmental Disorders; Pyruvates | 2019 |
Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure.
Topics: Acetylation; Animals; Cardiotonic Agents; Dobutamine; Electron Transport Complex I; Female; Heart Failure; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondria, Heart; Mitochondrial Diseases; Myocardium; NAD; Oxidative Stress; Pregnancy; Reactive Oxygen Species; Sirtuin 3 | 2013 |
Mitochondrial dysfunction and chronic disease: treatment with natural supplements.
Topics: Carnitine; Dietary Supplements; Fatigue Syndrome, Chronic; Humans; Mitochondrial Diseases; NAD; Thioctic Acid; Ubiquinone | 2014 |
NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.
Topics: Animals; Dietary Supplements; Disease Models, Animal; Electron Transport Complex IV; Energy Metabolism; Enzyme Activation; Gene Expression; Mice; Mice, Knockout; Mitochondria; Mitochondrial Diseases; Molecular Chaperones; NAD; Niacinamide; Oxidative Phosphorylation; Phenanthrenes; Phenotype; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Pyridinium Compounds; Sirtuin 1 | 2014 |
Mitochondrial complex I deficiency enhances skeletal myogenesis but impairs insulin signaling through SIRT1 inactivation.
Topics: Animals; Cell Line; Electron Transport Complex I; Gene Knockdown Techniques; Insulin; Insulin Resistance; Mice; Mitochondrial Diseases; Models, Biological; Muscle Development; Muscle Fibers, Skeletal; Muscle, Skeletal; NAD; Oxidative Phosphorylation; Protein Tyrosine Phosphatase, Non-Receptor Type 1; RNA, Small Interfering; Signal Transduction; Sirtuin 1 | 2014 |
Cerebral glucose hypometabolism is associated with mitochondrial dysfunction in patients with intractable epilepsy and cortical dysplasia.
Topics: Adolescent; Cerebral Cortex; Child; Child, Preschool; Electroencephalography; Electron Transport Complex IV; Epilepsy; Female; Fluorodeoxyglucose F18; Glial Fibrillary Acidic Protein; Humans; Male; Malformations of Cortical Development; Mitochondrial Diseases; NAD; Positron-Emission Tomography; Proto-Oncogene Proteins c-akt; Retrospective Studies | 2014 |
Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
Topics: Catalysis; Cytosol; Electron Transport; Electron Transport Chain Complex Proteins; Genetic Complementation Test; Gluconeogenesis; HeLa Cells; Humans; Levilactobacillus brevis; Mitochondria; Mitochondrial Diseases; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Oxidation-Reduction | 2016 |
Three-Dimensional Model of Human Nicotinamide Nucleotide Transhydrogenase (NNT) and Sequence-Structure Analysis of its Disease-Causing Variations.
Topics: Amino Acid Sequence; Binding Sites; Genetic Predisposition to Disease; Humans; Mitochondrial Diseases; Mitochondrial Proteins; Models, Molecular; Mutation; NAD; NADP Transhydrogenase, AB-Specific; Protein Binding; Protein Conformation; Protein Domains | 2016 |
NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death.
Topics: Animals; Apoptosis Inducing Factor; Cell Death; Cell Respiration; Cells, Cultured; Energy Metabolism; Glycolysis; Mice; Mice, Knockout; Mitochondria; Mitochondrial Diseases; NAD; Nerve Degeneration; Neurons; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Protein Transport; Receptors, Purinergic P2; Receptors, Purinergic P2X7 | 2010 |
Focal cerebral ischemia and mitochondrial dysfunction in the TNFα-transgenic rat.
Topics: Analysis of Variance; Animals; Animals, Genetically Modified; Blood Glucose; Brain Ischemia; Calcium; Cerebral Cortex; Electron Transport; Energy Metabolism; Mitochondria; Mitochondrial Diseases; NAD; Rats; Reactive Oxygen Species; Tumor Necrosis Factor-alpha | 2011 |
Amyloid-β-induced mitochondrial dysfunction impairs the autophagic lysosomal pathway in a tubulin dependent pathway.
Topics: Adenine Nucleotides; Amyloid beta-Peptides; Antineoplastic Agents, Phytogenic; Autophagy; Blotting, Western; Caspases; Cell Line, Tumor; Cell Proliferation; Coloring Agents; Electron Transport Complex IV; Enzyme Activation; Humans; Lysosomes; Microscopy, Confocal; Microtubules; Mitochondrial Diseases; Mitochondrial Membranes; NAD; Paclitaxel; Peptide Fragments; Signal Transduction; Tetrazolium Salts; Thiazoles; Tubulin | 2011 |
Exploring the therapeutic space around NAD+.
Topics: ADP-ribosyl Cyclase; Energy Metabolism; Humans; Metabolic Diseases; Mitochondria; Mitochondrial Diseases; NAD; Poly(ADP-ribose) Polymerases; Signal Transduction; Sirtuins | 2012 |
POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA.
Topics: Adenosine Triphosphate; Cells, Cultured; Copper; DNA, Mitochondrial; Energy Metabolism; Escherichia coli; Mitochondria; Mitochondrial Diseases; Mitochondrial Proteins; Mutation; NAD; Oxidative Stress; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Reactive Oxygen Species; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins | 2003 |
HUMAN MYOPATHY WITH GIANT ABNORMAL MITOCHONDRIA.
Topics: Acid Phosphatase; Adenosine Triphosphatases; Biopsy; Child; Electron Transport Complex IV; Electrons; Histocytochemistry; Humans; Lysosomes; Microscopy; Microscopy, Electron; Mitochondria; Mitochondrial Diseases; Muscles; Muscular Diseases; NAD; Oxidoreductases; Succinate Dehydrogenase | 1964 |
Oxidation-reduction states of NADH in vivo: from animals to clinical use.
Topics: Animals; Blood Circulation; Gerbillinae; Humans; Male; Mitochondria; Mitochondrial Diseases; Monitoring, Physiologic; NAD; Oxidation-Reduction; Spectrometry, Fluorescence | 2007 |
Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury.
Topics: Animals; Brain; Brain Injuries; Cell Respiration; Electron Transport; Mitochondria; Mitochondrial Diseases; Mitochondrial Proteins; NAD; Nitrogen; Poly (ADP-Ribose) Polymerase-1; Poly Adenosine Diphosphate Ribose; Poly(ADP-ribose) Polymerases; Rats; Rats, Sprague-Dawley | 2008 |
Hippocampal mitochondrial dysfunction in rat aging.
Topics: Aging; Animals; Electron Transport Complex I; Electron Transport Complex III; Electron Transport Complex IV; Energy Metabolism; Hippocampus; Male; Mitochondria; Mitochondrial Diseases; NAD; Nitric Oxide; Nitric Oxide Synthase; Organ Size; Rats; Rats, Wistar; Thiobarbituric Acid Reactive Substances | 2008 |