n4-(2-2-dimethyl-3-oxo-4h-pyrid(1-4)oxazin-6-yl)-5-fluoro-n2-(3-4-5-trimethoxyphenyl)-2-4-pyrimidinediamine and Liver-Diseases--Alcoholic

n4-(2-2-dimethyl-3-oxo-4h-pyrid(1-4)oxazin-6-yl)-5-fluoro-n2-(3-4-5-trimethoxyphenyl)-2-4-pyrimidinediamine has been researched along with Liver-Diseases--Alcoholic* in 2 studies

Other Studies

2 other study(ies) available for n4-(2-2-dimethyl-3-oxo-4h-pyrid(1-4)oxazin-6-yl)-5-fluoro-n2-(3-4-5-trimethoxyphenyl)-2-4-pyrimidinediamine and Liver-Diseases--Alcoholic

ArticleYear
Therapeutic Benefits of Spleen Tyrosine Kinase Inhibitor Administration on Binge Drinking-Induced Alcoholic Liver Injury, Steatosis, and Inflammation in Mice.
    Alcoholism, clinical and experimental research, 2016, Volume: 40, Issue:7

    Binge drinking is increasingly recognized as an important cause of liver disease with limited therapeutic options for patients. Binge alcohol use, similar to chronic alcohol consumption, induces numerous deregulated signaling events that drive liver damage, steatosis, and inflammation. In this article, we evaluated the role of spleen tyrosine kinase (SYK), which modulates numerous signaling events previously identified linked in the development alcohol-induced liver pathology.. A 3-day alcohol binge was administered to C57BL/6 female mice, and features of alcoholic liver disease were assessed. Some mice were treated daily with intraperitoneal injections of a SYK inhibitor (R406; 5 to 10 mg/kg body weight) or drug vehicle control. Liver and serum samples were collected and were assessed by Western blotting, biochemical, ELISA, electrophoretic mobility shift assays, real-time quantitative polymerase chain reaction, and histopathological analysis.. We found that binge drinking induced significant SYK activation (SYK(Y525/526) ) with no change in total SYK expression in the liver. Functional inhibition of SYK activation using a potent SYK inhibitor, R406, was associated with a significant decrease in alcohol-induced hepatic inflammation as demonstrated by decreased phospho-nuclear factor kappa beta (NF-κB) p65, NF-κB nuclear binding, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 mRNA in the liver. Compared to vehicle controls, SYK inhibitor treatment decreased alcohol binge-induced hepatocyte injury indicated by histology and serum alanine aminotransferase. Strikingly, SYK inhibitor treatment also resulted in a significant reduction in alcohol-induced liver steatosis.. Our novel observations demonstrate the role of SYK, activation in the pathomechanism of binge drinking-induced liver disease highlighting SYK a potential multifaceted therapeutic target.

    Topics: Alanine Transaminase; Animals; Binge Drinking; Chemokine CCL2; Ethanol; Extracellular Signal-Regulated MAP Kinases; Fatty Acid Synthases; Fatty Liver, Alcoholic; Female; Inflammation; Interleukin-1beta; Liver Diseases, Alcoholic; Mice; Nuclear Proteins; Oxazines; Perilipin-2; Protein Kinase Inhibitors; Pyridines; Syk Kinase; Tumor Necrosis Factor-alpha

2016
Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease.
    Hepatology (Baltimore, Md.), 2016, Volume: 64, Issue:4

    The spectrum of alcoholic liver disease (ALD) is a major cause of mortality with limited therapies available. Because alcohol targets numerous signaling pathways in hepatocytes and in immune cells, the identification of a master regulatory target that modulates multiple signaling processes is attractive. In this report, we assessed the role of spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, which has a central modulatory role in multiple proinflammatory signaling pathways involved in the pathomechanism of ALD. Using mouse disease models that represent various phases in the progression of human ALD, we found that alcohol, in all of these models, induced SYK activation in the liver, both in hepatocytes and liver mononuclear cells. Furthermore, significant SYK activation also occurred in liver samples and peripheral blood mononuclear cells of patients with ALD/alcoholic hepatitis compared to controls. Functional inhibition of SYK activation in vivo abrogated alcohol-induced hepatic neutrophil infiltration, resident immune cell activation, as well as inflammasome and extracellular signal-regulated kinase 1 and 2-mediated nuclear factor kappa B activation in mice. Strikingly, inhibition of SYK activation diminished alcohol-induced hepatic steatosis and interferon regulatory factor 3-mediated apoptosis.. Our data demonstrate a novel, functional, and multicellular role for SYK phosphorylation in modulating immune cell-driven liver inflammation, hepatocyte cell death, and steatosis at different stages of ALD. These novel findings highlight SYK as a potential multifunctional target in the treatment of alcoholic steatohepatitis. (Hepatology 2016;64:1057-1071).

    Topics: Animals; Cell Death; Fatty Liver; Female; Hepatocytes; Humans; Inflammation; Liver Diseases, Alcoholic; Male; Mice; Mice, Inbred C57BL; Middle Aged; Oxazines; Pyridines; Syk Kinase

2016