n-oleoylethanolamine and Pain

n-oleoylethanolamine has been researched along with Pain* in 7 studies

Other Studies

7 other study(ies) available for n-oleoylethanolamine and Pain

ArticleYear
Psychobiological Responses to Aerobic Exercise in Individuals With Posttraumatic Stress Disorder.
    Journal of traumatic stress, 2018, Volume: 31, Issue:1

    Previous reports have shown improvements in mood and increases in endocannabinoids in healthy adults following a session of aerobic exercise, but it is unclear whether adults with posttraumatic stress disorder (PTSD) experience similar responses. The purpose of this study was to examine psychobiological responses (plasma endocannabinoids [eCBs], mood, and pain) to aerobic exercise in a sample of adults with a diagnosis of PTSD (n = 12) and healthy controls (n = 12). Participants engaged in an aerobic exercise session in which they ran on a treadmill for 30 min at a moderate intensity (70 to 75% maximum heart rate [MHR]). Results indicated improvements in mood states and reductions in pain for both groups following exercise, ds = 0.19 to 1.53. Circulating concentrations of N-arachidonylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), and oleoylethanolamide (OEA) significantly increased (ps = .000 to .050) following the aerobic exercise session for both groups. There were no significant time, group, or interaction effects (ps = .062 to .846) for palmitoylethanolamide (PEA) and 2-oleoylglycerol (2-OG). Although eCBs increased significantly for both groups, within-group effect size calculations indicated the healthy controls experienced a greater magnitude of change for AEA when compared with adults with PTSD, d = 1.21 and d = 0.45, respectively; as well as for 2-AG, d = 0.43 and d = 0.21, respectively. The findings from this study indicated that adults with and without PTSD reported significant mood improvements following 30 min of moderate-intensity aerobic exercise. In addition, the endocannabinoid system was activated in adults with and without PTSD, although effect sizes suggest that adults with PTSD may have a blunted endocannabinoid response to exercise.

    Topics: Adolescent; Adult; Affect; Arachidonic Acids; Cannabinoids; Case-Control Studies; Endocannabinoids; Exercise; Female; Glycerides; Humans; Male; Oleic Acids; Pain; Pilot Projects; Stress Disorders, Post-Traumatic; Young Adult

2018
Mechanisms of exercise-induced hypoalgesia.
    The journal of pain, 2014, Volume: 15, Issue:12

    The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 years) completed 3 sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds and pressure pain ratings before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated that circulating concentrations of 2 endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as related lipids oleoylethanolamide, palmitoylethanolamide, N-docosahexaenoylethanolamine, and 2-oleoylglycerol, increased significantly (P < .05) following exercise. Pressure pain thresholds increased significantly (P < .05), whereas pressure pain ratings decreased significantly (P < .05) following exercise. Also, temporal summation ratings were significantly lower (P < .05) following exercise. These changes in pain responses did not differ between the placebo and naltrexone conditions (P > .05). A significant association was found between EIH and docosahexaenoylethanolamine. These results suggest involvement of a nonopioid mechanism in EIH following isometric exercise.. Currently, the mechanisms responsible for EIH are unknown. This study provides support for a potential endocannabinoid mechanism of EIH following isometric exercise.

    Topics: Adolescent; Adult; Amides; Arachidonic Acids; Cross-Over Studies; Double-Blind Method; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Glycine; Hot Temperature; Humans; Isometric Contraction; Male; Oleic Acids; Pain; Pain Perception; Pain Threshold; Palmitic Acids; Pressure; Young Adult

2014
Platelet-rich plasma exerts antinociceptive activity by a peripheral endocannabinoid-related mechanism.
    Tissue engineering. Part A, 2013, Volume: 19, Issue:19-20

    In regenerative medicine, platelet by-products containing factors physiologically involved in wound healing, have been successfully used in the form of platelet-rich plasma (PRP) for the topical therapy of various clinical conditions since it produces an improvement in tissue repair as well as analgesic effects. Measurement of endocannabinoids and related compounds in PRP revealed the presence of a significant amount of anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleoylethanolamide. Investigation of the activity of PRP on the keratinocyte cell line NCTC2544 in physiological and inflammatory conditions showed that, under inflammatory conditions, PRP induced in a statistically significant manner the production of these compounds by the cells suggesting that PRP might induce the production of these analgesic mediators particularly in the physiologically inflamed wounded tissue. Studies in a mouse model of acute inflammatory pain induced by formalin injection demonstrated a potent antinociceptive effect against both early and late nocifensive responses. This effect was observed following intrapaw injection of (1) total PRP; (2) lipids extracted from PRP; and (3) an endocannabinoid-enriched lipid fraction of PRP. In all conditions, antagonists of endocannabinoid CB1 and CB2 receptors, injected in the paw, abrogated the antinociceptive effects strongly suggesting for this preparation a peripheral mechanism of action. In conclusion, we showed that PRP and PRP lipid extract exert a potent antinociceptive activity linked, at least in part, to their endocannabinoids and related compound content, and to their capability of elevating the levels of these lipid mediators in cells.

    Topics: Amides; Analgesics; Animals; Arachidonic Acids; Blotting, Western; Cell Line, Tumor; Endocannabinoids; Ethanolamines; Glycerides; Humans; Inflammation; Keratinocytes; Mice; Oleic Acids; Pain; Palmitic Acids; Platelet-Rich Plasma; Polyunsaturated Alkamides

2013
Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system.
    British journal of pharmacology, 2012, Volume: 167, Issue:3

    Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour.. Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg⁻¹), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined.. Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction.. Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Drug Administration Schedule; Endocannabinoids; Ethanolamines; Inflammation; Male; Oleic Acids; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Spinal Cord

2012
Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase.
    Anesthesia and analgesia, 2009, Volume: 108, Issue:1

    Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family. It catalyzes the hydrolysis of several endogenous biologically active lipids, including anandamide (arachidonoyl ethanolamide), oleoyl ethanolamide, and palmitoyl ethanolamide. These endogenous FAAH substrates have been shown to be involved in a variety of physiological and pathological processes, including synaptic regulation, regulation of sleep and feeding, locomotor activity, pain and inflammation. Here we describe the biochemical and biological properties of a potent and selective FAAH inhibitor, 4-(3-phenyl-[1,2,4]thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide (JNJ-1661010). The time-dependence of apparent IC(50) values at rat and human recombinant FAAH, dialysis and mass spectrometry data indicate that the acyl piperazinyl fragment of JNJ-1661010 forms a covalent bond with the enzyme. This bond is slowly hydrolyzed, with release of the piperazinyl fragment and recovery of enzyme activity. The lack of inhibition observed in a rat liver esterase assay suggests that JNJ-1661010 is not a general esterase inhibitor. JNJ-1661010 is >100-fold preferentially selective for FAAH-1 when compared to FAAH-2. JNJ-1661010 dose-dependently increases arachidonoyl ethanolamide, oleoyl ethanolamide, and palmitoyl ethanolamide in the rat brain. The compound attenuates tactile allodynia in the rat mild thermal injury model of acute tissue damage and in the rat spinal nerve ligation (Chung) model of neuropathic pain. JNJ-1661010 also diminishes thermal hyperalgesia in the inflammatory rat carrageenan paw model. These data suggest that FAAH inhibitors with modes of action similar to JNJ-1661010 may be useful clinically as broad-spectrum analgesics.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Brain; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Hot Temperature; Humans; Hydrolysis; Isoenzymes; Kinetics; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Oleic Acids; Pain; Pain Measurement; Pain Threshold; Palmitic Acids; Piperazines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reaction Time; Recombinant Proteins; Thiadiazoles

2009
Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain.
    Pain, 2007, Dec-15, Volume: 133, Issue:1-3

    Oleoylethanolamide (OEA) is a natural fatty acid amide that mainly modulates feeding and energy homeostasis by binding to peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Navas F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature 2001;414:209-12; Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, et al. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 2003;425:90-3]. Additionally, it has been proposed that OEA could act via other receptors, including the vanilloid receptor (TRPV1) [Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 2005;564:541-7.] or the GPR119 receptor [Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3:167-175], suggesting that OEA might subserve other physiological roles, including pain perception. We have evaluated the effect of OEA in two types of nociceptive responses evoked by visceral and inflammatory pain in rodents. Our results suggest that OEA has analgesic properties reducing the nociceptive responses produced by administration of acetic acid and formalin in two experimental animal models. Additional research was performed to investigate the mechanisms underlying this analgesic effect. To this end, we evaluated the actions of OEA in mice null for the PPAR-alpha receptor gene and compared its actions with those of PPAR-alpha receptor wild-type animal. We also compared the effect of MK-801 in order to evaluate the role of NMDA receptor in this analgesia. Our data showed that OEA reduced visceral and inflammatory responses through a PPAR-alpha-activation independent mechanism. Co-administration of subanalgesic doses of MK-801 and OEA produced an analgesic effect, suggesting the participation of glutamatergic transmission in the antinociceptive effect of OEA. This study represents a novel approach to the examination of the effectiveness of OEA in nociceptive responses and provides a framework for understanding its biological functions and endogenous targets in visceral and inflammatory pain.

    Topics: Analgesics; Animals; Anticholesteremic Agents; Behavior, Animal; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Excitatory Amino Acid Antagonists; Exploratory Behavior; Inflammation; Male; Mice; Mice, Knockout; Morphine; Oleic Acids; Pain; Pain Measurement; PPAR gamma; Pyrimidines

2007
Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1.
    The Journal of physiology, 2005, Apr-15, Volume: 564, Issue:Pt 2

    Oleoylethanolamide (OEA) is an endogenous lipid that regulates feeding and body weight. Although the effects of OEA are believed to depend on activation of vagal sensory afferent neurones, the mechanisms involved in exciting these neurones are unclear. Here we show that OEA directly excited nodose ganglion neurones, the cell bodies of vagal afferents. OEA depolarized these neurones and evoked inward currents that were restricted to capsaicin-sensitive cells. These currents were fully blocked by the TRPV1 inhibitor, capsazepine, and no responses to OEA were observed in neurones cultured from TRPV1-null mice. Similarly, OEA induced a rise in Ca(+) concentration in wild-type but not TRPV1-deficient neurones, and responses to OEA were greater at 37 degrees C compared to room temperature. Significantly, OEA administration in mice induced visceral pain-related behaviours that were inhibited by capsazepine and absent in TRPV1-null animals. Further, OEA reduced 30-min food intake in wild-type but not in TRPV1-null mice. Thus, the acute behavioural effects of OEA may result from visceral malaise via the activation of TRPV1.

    Topics: Animals; Eating; Endocannabinoids; Ion Channels; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons, Afferent; Nodose Ganglion; Oleic Acids; Pain; Time Factors; TRPV Cation Channels; Vagus Nerve; Viscera

2005