n-oleoylethanolamine and Neuroblastoma

n-oleoylethanolamine has been researched along with Neuroblastoma* in 2 studies

Other Studies

2 other study(ies) available for n-oleoylethanolamine and Neuroblastoma

ArticleYear
Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism.
    PloS one, 2011, Volume: 6, Issue:10

    The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines--N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA)--which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARĪ±, PPARĪ³ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis.

    Topics: Amides; Animals; Antineoplastic Agents; Arachidonic Acids; Cannabinoid Receptor Modulators; Cell Line, Tumor; Cell Proliferation; Endocannabinoids; Ethanolamines; Metabolism; Mice; Neoplasms; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2011
Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture.
    Journal of neurochemistry, 2001, Volume: 76, Issue:2

    Endocannabinoids are lipid mediators thought to modulate central and peripheral neural functions. We report here gas chromatography-electron impact mass spectrometry analysis of human brain, showing that lipid extracts contain anandamide and 2-arachidonoylglycerol (2-AG), the most active endocannabinoids known to date. Human brain also contained the endocannabinoid-like compounds N-oleoylethanolamine, N-palmitoylethanolamine and N-stearoylethanolamine. Anandamide and 2-AG (0.16 +/- 0.05 and 0.10 +/- 0.05 nmol/mg protein, respectively) represented 7.7% and 4.8% of total endocannabinoid-like compounds, respectively. N-Palmitoyethanolamine was the most abundant (50%), followed by N-oleoyl (23.6%) and N-stearoyl (13.9%) ethanolamines. A similar composition in endocannabinoid-like compounds was found in human neuroblastoma CHP100 and lymphoma U937 cells, and also in rat brain. Remarkably, human meningioma specimens showed an approximately six-fold smaller content of all N-acylethanolamines, but not of 2-AG, and a similar decrease was observed in a human glioblastoma. These ex vivo results fully support the purported roles of endocannabinoids in the nervous system.

    Topics: Amides; Animals; Arachidonic Acids; Brain Chemistry; Brain Neoplasms; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glioblastoma; Glycerides; Humans; Lymphoma; Meningioma; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Reference Values; Stearic Acids; Tumor Cells, Cultured; U937 Cells

2001