n-oleoylethanolamine has been researched along with Insulin-Resistance* in 6 studies
6 other study(ies) available for n-oleoylethanolamine and Insulin-Resistance
Article | Year |
---|---|
Palmitoleoylethanolamide Is an Efficient Anti-Obesity Endogenous Compound: Comparison with Oleylethanolamide in Diet-Induced Obesity.
Obesity is currently a major epidemic in the developed world. However, we lack a wide range of effective pharmacological treatments and therapies against obesity, and those approved are not devoid of adverse effects. Dietary components such as palmitoleic acid have been proposed to improve metabolic disbalance in obesity, although the mechanisms involved are not well understood. Both palmitoleic acid (POA) and oleic acid (OA) can be transformed in N-acylethanolamines (NAEs), mediating the effects of dietary POA and OA. To test this hypothesis, here, we study the effects on food intake and body weight gain of palmitoleylethanolamide (POEA) and the OA-derived NAE analogue, oleoylethanolamide (OEA), in Sprague-Dawley rats with a hypercaloric cafeteria diet (HFD). Plasma biochemical metabolites, inflammatory mediators, and lipogenesis-associated liver protein expression were also measured. The results indicate that POEA is able to improve health status in diet-induced obesity, decreasing weight, liver steatosis, inflammation, and dyslipemia. The action of POEA was found to be almost identical to that of OEA, which is an activator of the nuclear peroxisome proliferator receptor alpha (PPARα), and it is structurally related to POEA. These results suggest that the dietary administration of either POA or POEA might be considered as nutritional intervention as complementary treatment for complicated obesity in humans. Topics: Animals; Body Weight; Cytokines; Diet; Endocannabinoids; Ethanolamines; Fatty Acids; Fatty Acids, Monounsaturated; Fatty Liver; Humans; Insulin Resistance; Lipogenesis; Liver; Male; Obesity; Oleic Acid; Oleic Acids; Rats; Rats, Sprague-Dawley | 2021 |
Chronic oleoylethanolamide treatment attenuates diabetes-induced mice encephalopathy by triggering peroxisome proliferator-activated receptor alpha in the hippocampus.
Brain is a site of diabetic end-organ damage. Diabetes-associated cognitive dysfunction, referred as "diabetic encephalopathy" (DE) has been coined for the patients with type 2 diabetes mellitus showing decline in their cognitive function, especially weak episodic memory, cognitive inflexibility and poor psychomotor performance leading towards Alzheimer's disease. Current evidence supported that aberrant synapses, energy metabolism imbalance, advanced glycation end products (AGEs) accumulation and Tau hyperphosphorylation are associated with cognition deficits induced by diabetes. Oleoylethanolamide (OEA), an endogenous peroxisome proliferator-activated receptor alpha (PPARα) agonist, has anti-hyperlipidemia, anti-inflammatory and neuroprotective activities. However, the effect of OEA on DE is unknown. Therefore, we tested its influence against cognitive dysfunction in high fat diet and streptozotocin (HFD + STZ)-induced diabetic C57BL/6J and PPARα Topics: Animals; Blood Glucose; Brain Diseases; Cognition Disorders; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Endocannabinoids; Glycation End Products, Advanced; Hippocampus; Insulin Resistance; Lipids; Male; Maze Learning; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurogenesis; Neuronal Plasticity; Oleic Acids; PPAR alpha; Specific Pathogen-Free Organisms; Streptozocin; tau Proteins | 2019 |
Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammation via N-oleoylethanolamide (OEA)-mediated pathways.
Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes. Topics: 3T3-L1 Cells; Adipocytes; Adipokines; Adult; Animals; Case-Control Studies; Chemokine CCL2; Endocannabinoids; Enzyme Activation; Ethanolamines; Extracellular Signal-Regulated MAP Kinases; Female; Gastric Bypass; Hospitals, University; Humans; Inflammation Mediators; Insulin Resistance; Lipids; Longitudinal Studies; Male; Mice; Middle Aged; Obesity, Morbid; Oleic Acids; Panniculitis; Pilot Projects; Prospective Studies; Signal Transduction; Subcutaneous Fat; Switzerland; Time Factors; Treatment Outcome; Weight Loss | 2015 |
Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture.
The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity. Topics: Adiponectin; Adult; Amides; Amidohydrolases; Anthropometry; Arachidonic Acids; Blood Pressure; Body Mass Index; Brazil; Endocannabinoids; Ethanolamines; Ethnicity; Female; Genotype; Glycerides; Homeostasis; Homozygote; Humans; Insulin Resistance; Male; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Phenotype; Polymorphism, Genetic; Polyunsaturated Alkamides; Prevalence; Risk Factors | 2015 |
Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study.
To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women.. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry.. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05).. This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand. Topics: Amides; Arachidonic Acids; Body Composition; Body Mass Index; Cholesterol, HDL; Cholesterol, LDL; Cohort Studies; Endocannabinoids; Ethanolamines; Female; Glucose Clamp Technique; Glycerides; Humans; Hyperinsulinism; Insulin; Insulin Resistance; Middle Aged; Obesity; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Postmenopause; Triglycerides; Weight Loss | 2014 |
Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes. Topics: Adipose Tissue; Animals; Anti-Obesity Agents; Body Weight; Diet; Dose-Response Relationship, Drug; Endocannabinoids; Gene Knockout Techniques; Insulin Resistance; Male; Mice; Obesity; Oleic Acids; Oxytocin; PPAR alpha; Rats | 2011 |