n-oleoylethanolamine has been researched along with Fatty-Liver* in 2 studies
2 other study(ies) available for n-oleoylethanolamine and Fatty-Liver
Article | Year |
---|---|
Palmitoleoylethanolamide Is an Efficient Anti-Obesity Endogenous Compound: Comparison with Oleylethanolamide in Diet-Induced Obesity.
Obesity is currently a major epidemic in the developed world. However, we lack a wide range of effective pharmacological treatments and therapies against obesity, and those approved are not devoid of adverse effects. Dietary components such as palmitoleic acid have been proposed to improve metabolic disbalance in obesity, although the mechanisms involved are not well understood. Both palmitoleic acid (POA) and oleic acid (OA) can be transformed in N-acylethanolamines (NAEs), mediating the effects of dietary POA and OA. To test this hypothesis, here, we study the effects on food intake and body weight gain of palmitoleylethanolamide (POEA) and the OA-derived NAE analogue, oleoylethanolamide (OEA), in Sprague-Dawley rats with a hypercaloric cafeteria diet (HFD). Plasma biochemical metabolites, inflammatory mediators, and lipogenesis-associated liver protein expression were also measured. The results indicate that POEA is able to improve health status in diet-induced obesity, decreasing weight, liver steatosis, inflammation, and dyslipemia. The action of POEA was found to be almost identical to that of OEA, which is an activator of the nuclear peroxisome proliferator receptor alpha (PPARĪ±), and it is structurally related to POEA. These results suggest that the dietary administration of either POA or POEA might be considered as nutritional intervention as complementary treatment for complicated obesity in humans. Topics: Animals; Body Weight; Cytokines; Diet; Endocannabinoids; Ethanolamines; Fatty Acids; Fatty Acids, Monounsaturated; Fatty Liver; Humans; Insulin Resistance; Lipogenesis; Liver; Male; Obesity; Oleic Acid; Oleic Acids; Rats; Rats, Sprague-Dawley | 2021 |
Decreased body weight and hepatic steatosis with altered fatty acid ethanolamide metabolism in aged L-Fabp -/- mice.
The tissue-specific sources and regulated production of physiological signals that modulate food intake are incompletely understood. Previous work showed that L-Fabp(-/-) mice are protected against obesity and hepatic steatosis induced by a high-fat diet, findings at odds with an apparent obesity phenotype in a distinct line of aged L-Fabp(-/-) mice. Here we show that the lean phenotype in L-Fabp(-/-) mice is recapitulated in aged, chow-fed mice and correlates with alterations in hepatic, but not intestinal, fatty acid amide metabolism. L-Fabp(-/-) mice exhibited short-term changes in feeding behavior with decreased food intake, which was associated with reduced abundance of key signaling fatty acid ethanolamides, including oleoylethanolamide (OEA, an agonist of PPARĪ±) and anandamide (AEA, an agonist of cannabinoid receptors), in the liver. These reductions were associated with increased expression and activity of hepatic fatty acid amide hydrolase-1, the enzyme that degrades both OEA and AEA. Moreover, L-Fabp(-/-) mice demonstrated attenuated responses to OEA administration, which was completely reversed with an enhanced response after administration of a nonhydrolyzable OEA analog. These findings demonstrate a role for L-Fabp in attenuating obesity and hepatic steatosis, and they suggest that hepatic fatty acid amide metabolism is altered in L-Fabp(-/-) mice. Topics: Adiposity; Age Factors; Amidohydrolases; Animals; Arachidonic Acids; Body Weight; Chromosomes; Diet, Fat-Restricted; Endocannabinoids; Enzyme Activation; Fatty Acid-Binding Proteins; Fatty Liver; Feeding Behavior; Female; Lipid Metabolism; Liver; Mice; Mice, Inbred C57BL; Mice, Knockout; Obesity; Oleic Acids; Polyunsaturated Alkamides; PPAR gamma; Quantitative Trait Loci; Signal Transduction | 2012 |