n-oleoyldopamine and Disease-Models--Animal

n-oleoyldopamine has been researched along with Disease-Models--Animal* in 5 studies

Other Studies

5 other study(ies) available for n-oleoyldopamine and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
    Science translational medicine, 2019, 07-10, Volume: 11, Issue:500

    There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch.

    Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries

2019
Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014, Nov-12, Volume: 34, Issue:46

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress.

    Topics: Action Potentials; Animals; Calcium; Capsaicin; Cell Survival; Disease Models, Animal; Diterpenes; Dopamine; Glaucoma; Intraocular Pressure; Mice; Mice, Knockout; Primary Cell Culture; Retinal Ganglion Cells; Stress, Physiological; TRPV Cation Channels

2014
The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level.
    Journal of neurophysiology, 2009, Volume: 102, Issue:1

    Transient receptor potential vanilloid (TRPV1) receptors are abundant in a subpopulation of primary sensory neurons that convey nociceptive information from the periphery to the spinal cord dorsal horn. The TRPV1 receptors are expressed on both the peripheral and central branches of these dorsal root ganglion (DRG) neurons and can be activated by capsaicin, heat, low pH, and also by recently described endogenous lipids. Using patch-clamp recordings from superficial dorsal horn (DH) neurons in acute spinal cord slices, the effect of application of the endogenous TRPV1 agonist N-oleoyldopamine (OLDA) on the frequency of miniature excitatory postsynaptic currents (mEPSCs) was evaluated. A high concentration OLDA (10 microM) solution was needed to increase the mEPSC frequency, whereas low concentration OLDA (0.2 microM) did not evoke any change under control conditions. The increase was blocked by the TRPV1 antagonists SB366791 or BCTC. Application of a low concentration of OLDA evoked an increase in mEPSC frequency after activation of protein kinase C by phorbol ester (PMA) and bradykinin or in slices from animals with peripheral inflammation. Increasing the bath temperature from 24 to 34 degrees C enhanced the basal mEPSC frequency, but the magnitude of changes in the mEPSC frequency induced by OLDA administration was similar at both temperatures. Our results suggest that presumed endogenous agonists of TRPV1 receptors, like OLDA, could have a considerable impact on synaptic transmission in the spinal cord, especially when TRPV1 receptors are sensitized. Spinal TRPV1 receptors could play a pivotal role in modulation of nociceptive signaling in inflammatory pain.

    Topics: Analysis of Variance; Anilides; Animals; Animals, Newborn; Bradykinin; Cinnamates; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Excitatory Postsynaptic Potentials; Ganglia, Spinal; In Vitro Techniques; Male; Neurogenic Inflammation; Pain Measurement; Patch-Clamp Techniques; Phorbol Esters; Rats; Rats, Wistar; Sensory Receptor Cells; Signal Transduction; Spinal Cord; Temperature; TRPV Cation Channels; Vasodilator Agents

2009
Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels.
    British journal of pharmacology, 2004, Volume: 143, Issue:2

    Four long-chain, linear fatty acid dopamides (N-acyldopamines) have been identified in nervous bovine and rat tissues. Two unsaturated members of this family of lipids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine, were shown to potently activate the transient receptor potential channel type V1 (TRPV1), also known as the vanilloid receptor type 1 for capsaicin. However, the other two congeners, N-palmitoyl- and N-stearoyl-dopamine (PALDA and STEARDA), are inactive on TRPV1. We have investigated here the possibility that the two compounds act by enhancing the effect of NADA on TRPV1 ('entourage' effect). When pre-incubated for 5 min with cells, both compounds dose-dependently enhanced NADA's TRPV1-mediated effect on intracellular Ca(2+) in human embryonic kidney cells overexpressing the human TRPV1. In the presence of either PALDA or STEARDA (0.1-10 microm), the EC(50) of NADA was lowered from approximately 90 to approximately 30 nm. The effect on intracellular Ca(2+) by another endovanilloid, N-arachidonoyl-ethanolamine (anandamide, 50 nm), was also enhanced dose-dependently by both PALDA and STEARDA. PALDA and STEARDA also acted in synergy with low pH (6.0-6.7) to enhance intracellular Ca(2+) via TRPV1. When co-injected with NADA (0.5 micrograms) in rat hind paws, STEARDA (5 micrograms) potentiated NADA's TRPV1-mediated nociceptive effect by significantly shortening the withdrawal latencies from a radiant heat source. STEARDA (1 and 10 micrograms) also enhanced the nocifensive behavior induced by carrageenan in a typical test of inflammatory pain. These data indicate that, despite their inactivity per se on TRPV1, PALDA and STEARDA may play a role as 'entourage' compounds on chemicophysical agents that interact with these receptors, with possible implications in inflammatory and neuropathic pain.

    Topics: Animals; Arachidonic Acids; Calcium; Carrageenan; Cell Line; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Drug Therapy, Combination; Endocannabinoids; Hindlimb; Humans; Hyperalgesia; Inflammation; Italy; Kidney; Male; Pain Measurement; Palmitates; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Drug; Stearates; TRPV Cation Channels

2004