n-n--dibenzhydrylethane-1-2-diamine-dihydrochloride has been researched along with Pain* in 6 studies
6 other study(ies) available for n-n--dibenzhydrylethane-1-2-diamine-dihydrochloride and Pain
Article | Year |
---|---|
Metabotropic glutamate receptor subtype 7 in the dorsal striatum oppositely modulates pain in sham and neuropathic rats.
The study investigated the role of the metabotropic glutamate receptor subtype 7 (mGluR7) in pain signalling in the dorsal striatum of sham and neuropathic rats. Supraspinal circuitries involved in the dorsal striatum control of pain were also explored. In the sham rats, microinjection of N,N'-bis(diphenylmethyl)-1,2-ethanediamine (AMN082), a selective mGluR7 positive allosteric modulator, into the dorsal striatum, facilitated pain, increased the activity of the ON cells and inhibited the activity of the OFF cells in the rostral ventromedial medulla, and decreased glutamate levels in the dorsal striatum. Conversely, AMN082 inhibited pain and the activity of the ON cells while increased the activity of the OFF cells in rats with spared nerve injury (SNI) of the sciatic nerve. AMN082 also decreased glutamate levels in the dorsal striatum of SNI rats. The effect of AMN082 on mechanical allodynia and glutamate release was blocked by 6-(2,4-dimethylphenyl)-2-ethyl-6,7-dihydro-4(5H)-benzoxazolone (ADX71743), a selective mGluR7 negative allosteric modulator. Moreover, in the sham rats, AMN082 increased the activity of total nociceptive convergent neurons in the dorsal reticular nucleus while in the SNI rats, such activity was decreased. The administration of lidocaine into the subthalamic nucleus abolished the effect of AMN082 on the total nociceptive convergent neurons in the sham rats but not in the SNI rats. Thus, the dual effect of mGluR7 in facilitating or inhibiting pain responses may be due to the recruitment of different pathways of the basal ganglia, the indirect or direct pathway, in physiological or pathological conditions, respectively. Topics: Animals; Benzhydryl Compounds; Benzoxazoles; Corpus Striatum; Glutamic Acid; Hyperalgesia; Lidocaine; Male; Medulla Oblongata; Microinjections; Neuralgia; Neurons; Neuroprotective Agents; Pain; Rats; Receptors, Metabotropic Glutamate; Reticular Formation; Sciatic Nerve; Subthalamic Nucleus | 2018 |
Activation of metabotropic glutamate receptor 7 in spinal cord inhibits pain and hyperalgesia in a novel formalin model in sheep.
This study set out to characterize the contribution of group III metabotropic glutamate receptor 7 activation to nociceptive behaviour and mechanical hypersensitivity in a novel formalin test in sheep. The mGlu receptor 7 allosteric agonist, N,N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082; 2-20 mM), the nonselective group III mGlu receptor agonist L-(+)-2-amino-4-phosphonobutyric acid (0.2-20 mM) and drug vehicle were injected intrathecally into naive subjects (n=7 per group), or 5 min preformalin (3%; 0.2 ml)/saline injection (intradermal), into the lower forelimb of adult female sheep (n=5-7 per group). Forelimb withdrawal thresholds to noxious mechanical stimulation and pain behaviours (time spent nonweight bearing or flinching) were assessed for up to 180 min. Formalin induced a characteristic biphasic pain-behaviour response and mechanical hyperalgesia between 1-5 and 30-120 min postinjection. Treatment with AMN082, but not L-(+)-2-amino-4-phosphonobutyric acid significantly inhibited both early and late phase formalin-induced hyperalgesia and pain behaviours. AMN082 also induced a rapid but short lasting analgesia in naive subjects. These data suggest that enhancing endogenous metabotropic glutamate receptor 7 activity in spinal cord, using the novel allosteric modulator, AMN082, blocks pain and hyperalgesia, and may be of therapeutic benefit for the treatment of inflammatory pain. Topics: Aminobutyrates; Animals; Behavior, Animal; Benzhydryl Compounds; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Formaldehyde; Hyperalgesia; Inflammation; Injections, Spinal; Pain; Receptors, Metabotropic Glutamate; Sheep | 2011 |
Differential effects of mGluR7 and mGluR8 activation on pain-related synaptic activity in the amygdala.
Pain-related plasticity in the laterocapsular division of the central nucleus of the amygdala (CeLC) depends on the activation of group I metabotropic glutamate receptors (mGluRs) whereas groups II and III mGluRs generally serve inhibitory functions. Recent evidence suggests differential roles of group III subtypes mGluR7 (pain enhancing) and mGluR8 (pain inhibiting) in the amygdala (Palazzo et al., 2008). Here we addressed the underlying synaptic mechanisms of mGluR7 and mGluR8 function in the CeLC under normal conditions and in an arthritis pain model. Using patch-clamp recordings in rat brain slices, we measured monosynaptic excitatory post-synaptic currents (EPSCs), mono- and polysynaptic inhibitory synaptic currents (IPSCs), and synaptically evoked action potentials (E-S coupling) in CeLC neurons. Synaptic responses were evoked by electrical stimulation in the basolateral amygdala (BLA). A selective mGluR8 agonist (DCPG) inhibited evoked EPSCs and synaptic spiking more potently in slices from arthritic rats than in slices from normal rats. In contrast, a selective mGluR7 agonist (AMN082) increased EPSCs and E-S coupling in slices from normal rats but not in the pain model. The effects of AMN082 and DCPG were blocked by a group III antagonist (MAP4). AMN082 increased frequency, but not amplitude, of spontaneous EPSCs but had no effect on miniature EPSCs (in TTX). DCPG decreased frequency, but not amplitude, of spontaneous and miniature EPSCs. The data suggest that mGluR8 acts presynaptically to inhibit excitatory transmission whereas the facilitatory effects of mGluR7 are indirect through action potential-dependent network action. AMN082 decreased evoked IPSCs and frequency, but not amplitude, of spontaneous and miniature IPSCs in slices from normal rats. DCPG had no effect on inhibitory transmission. The results suggest that presynaptic mGluR7 inhibits inhibitory synaptic transmission to gate glutamatergic transmission to CeLC neurons under normal conditions but not in pain. Presynaptic mGluR8 inhibits pain-related enhanced excitatory transmission in the CeLC. Topics: Adjuvants, Immunologic; Amygdala; Animals; Arthritis; Benzhydryl Compounds; Bicuculline; Biophysics; Disease Models, Animal; Electric Stimulation; Excitatory Amino Acid Agents; Excitatory Postsynaptic Potentials; GABA Antagonists; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Male; Neurons; Pain; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Synaptic Potentials | 2011 |
The selective metabotropic glutamate receptor 7 allosteric agonist AMN082 inhibits inflammatory pain-induced and incision-induced hypersensitivity in rat.
This study characterized the contribution of metabotropic glutamate receptor 7 (mGlu7 receptor) activation to the development of inflammatory hyperalgesia and allodynia, using a novel, systemically active mGlu7 receptor allosteric agonist, N, N'-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082). The effects of AMN082 (0.1, 1 or 5 mg/kg, intraperitoneally; 5 or 50 nmol, intrathecally) or diclofenac (5 mg/kg, intraperitoneally) administered 30 min preprocedure or 3 h postprocedure on hindpaw withdrawal latency (in seconds) to thermal stimulation, and response threshold (in grams) to mechanical stimulation, were measured in adult rats (n = 6-8 per group) before and up to 24 h after intradermal injection of carrageenan into the hindpaw or hindpaw incision. Precarrageenan injection of 1 and 5 mg/kg AMN082, but not diclofenac inhibited thermal hyperalgesia, whereas postcarrageenan, both AMN082 and diclofenac attenuated thermal hyperalgesia and allodynia. In the paw incision model, presurgical and postsurgical administration of 1 and 5 mg/kg AMN082 inhibited thermal hyperalgesia, but not allodynia, whereas diclofenac was effective in attenuating both thermal hyperalgesia and allodynia but only when administered postsurgically. Intrathecal injection of AMN082 postcarrageenan and postsurgery also significantly attenuated thermal hyperalgesia. Enhancing endogenous mGlu7 receptor activity inhibits postinjury stimulus-evoked hypersensitivity and may be of therapeutic benefit for the treatment of inflammatory and incision-induced pain. Topics: Allosteric Regulation; Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzhydryl Compounds; Carrageenan; Diclofenac; Disease Models, Animal; Hyperalgesia; Inflammation; Injections, Intradermal; Injections, Spinal; Male; Pain; Pain, Postoperative; Phosphoserine; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate | 2009 |
Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors.
The amygdala plays an important role in the emotional-affective component of pain and in pain modulation. Group III metabotropic glutamate receptors (mGluRs) regulate pain-related activity in the amygdala, but the behavioral consequence and contribution of individual subtypes are not known yet. This study determined the effects of mGluR7 and mGluR8 activation in the central nucleus of the amygdala (CeA) on nocifensive and affective pain responses and on pain-related anxiety-like behavior of adult rats. The pain state was induced by intraarticular injections of kaolin/carrageenan into one knee joint to produce a localized monoarthritis. Subtype-selective agonists were administered into the CeA by microdialysis in normal rats and in rats with arthritis. An mGluR7-selective agonist (N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride, AMN082, 25microM) decreased spinal withdrawal reflex thresholds and increased audible and ultrasonic vocalizations evoked by brief (15s) compression of the knee. AMN082 also decreased the open-arm preference in the elevated plus maze (EPM) test, suggesting anxiety-like behavior. In arthritic animals, however, AMN082 failed to modulate the increased spinal reflexes and vocalizations and anxiety-like behavior. An mGluR8-selective agonist (S-3,4-dicarboxyphenylglycine, S-3,4-DCPG, 10microM) had no effect in normal animals but inhibited the increased spinal reflex responses and audible and ultrasonic vocalizations of arthritic rats. S-3,4-DCPG also increased the open-arm choices of arthritic rats, suggesting anxiolytic effects. The results suggest that under normal conditions mGluR7, but not mGluR8, facilitates pain responses and has anxiogenic properties whereas mGluR8, but not mGluR7, can inhibit nocifensive and affective behaviors and anxiety in a model of arthritic pain. Topics: Amygdala; Animals; Arthritis; Behavior, Animal; Benzhydryl Compounds; Benzoates; Disease Models, Animal; Excitatory Amino Acid Agonists; Glycine; Kaolin; Male; Maze Learning; Microdialysis; Pain; Pain Measurement; Pain Threshold; Physical Stimulation; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Reflex | 2008 |
Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on inflammatory and neuropathic pain in mice.
In this study, the effect of (S)-3,4-dicarboxyphenylglycine (DCPG), a selective mGlu8 receptor agonist, has been investigated in inflammatory and neuropathic pain models in order to elucidate the role of mGlu8 receptor in modulating pain perception. Inflammatory pain was induced by the peripheral injection of formalin or carrageenan in awake mice. Systemic administration of (S)-3,4-DCPG, performed 15 min before formalin, decreased both early and delayed nociceptive responses of the formalin test. When this treatment was carried out 15 min after the peripheral injection of formalin it still reduced the late hyperalgesic phase. Similarly, systemic (S)-3,4-DCPG reduced carrageenan-induced thermal hyperalgesia and mechanical allodynia when administered 15 min before carrageenan, but no effect on pain behaviour was observed when (S)-3,4-DCPG was given after the development of carrageenan-induced inflammatory pain. When microinjected into the lateral PAG (RS)-alpha-methylserine-O-phoshate (MSOP), a group III receptor antagonist, antagonised the analgesic effect induced by systemic administration of (S)-3,4-DCPG in both of the inflammatory pain models. Intra-lateral PAG (S)-3,4-DCPG reduced pain behaviour when administered 10 min before formalin or carrageenan; both the effects were blocked by intra-lateral PAG MSOP. (S)-3,4-DCPG was ineffective in alleviating thermal hyperalgesia and mechanical allodynia 7 days after the chronic constriction injury of the sciatic nerve, whereas it proved effective 3 days after surgery. Taken together these results suggest that stimulation of mGlu8 receptors relieve formalin and carrageenan-induced hyperalgesia in inflammatory pain, whereas it would seem less effective in established inflammatory or neuropathic pain. Topics: Analysis of Variance; Animals; Benzhydryl Compounds; Benzoates; Carrageenan; Dinucleoside Phosphates; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Excitatory Amino Acid Antagonists; Formaldehyde; Glycine; Hyperalgesia; Inflammation; Male; Mice; Pain; Pain Measurement; Pain Threshold; Phosphoserine; Reaction Time; Receptors, Metabotropic Glutamate | 2007 |