n-n--dibenzhydrylethane-1-2-diamine-dihydrochloride has been researched along with Nociceptive-Pain* in 3 studies
3 other study(ies) available for n-n--dibenzhydrylethane-1-2-diamine-dihydrochloride and Nociceptive-Pain
Article | Year |
---|---|
The influence of AMN082, metabotropic glutamate receptor 7 (mGlu7) allosteric agonist on the acute and chronic antinociceptive effects of morphine in the tail-immersion test in mice: Comparison with mGlu5 and mGlu2/3 ligands.
Preclinical data indicated that the metabotropic glutamate receptors 5 (mGlu5) and glutamate receptors 2/3 (mGlu2/3) are involved in modulating morphine antinociception. However, little is known about the role of metabotropic glutamate receptors 7 (mGlu7) in this phenomenon. We compared the effects of AMN082 (0.1, 1 or 5mg/kg, ip), a selective mGlu7 allosteric agonist, LY354740 (0.1, 1 or 5mg/kg, ip), an mGlu2/3 agonist and MTEP (0.1, 1 or 5mg/kg, ip), a selective mGlu5 antagonist, on the acute antinociceptive effect of morphine (5mg/kg, sc) and also on the development and expression of tolerance to morphine analgesia in the tail-immersion test in mice. To determine the role of mGlu7 in morphine tolerance, and the association of the mGlu7 effect with the N-methyl-d-aspartate (NMDA) receptors regulation, we used MMPIP (10mg/kg, ip), a selective mGlu7 antagonist and MK-801, a NMDA antagonist. Herein, the acute administration of AMN082, MTEP or LY354740 alone failed to evoked antinociception, and did not affect morphine (5mg/kg, sc) antinociception. However, these ligands inhibited the development of morphine tolerance, and we indicated that MMPIP reversed the inhibitory effect of AMN082. When given together, the non-effective doses of AMN082 and MK-801 did not alter the tolerance to morphine. Thus, mGlu7, similarly to mGlu2/3 and mGlu5, are involved in the development of tolerance to the antinociceptive effects of morphine, but not in the acute morphine antinociception. Furthermore, while mGlu7 are engaged in the development of morphine tolerance, no interaction exists between mGlu7 and NMDA receptors in this phenomenon. Topics: Allosteric Regulation; Analgesics; Animals; Benzhydryl Compounds; Bridged Bicyclo Compounds; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Tolerance; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Male; Mice; Morphine; Nociceptive Pain; Pyridines; Pyridones; Random Allocation; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Tail; Thiazoles | 2018 |
Metabotropic Glutamate Receptor 7 (mGluR7) as a Target for Modulating Pain-evoked Activities of Neurons in the Hippocampal CA3 Region of Rats.
Metabotropic glutamate could contribute to the development of neuropathic pain-related behaviors. Previously, we have confirmed that the glutamic acid and dizocilpine maleate in the hippocampal CA3 region are involved in the modulation of noxious stimulation. However, whether the metabotropic glutamate receptor 7 (mGluR7) can modulate the pain-evoked electrical activities of pain-excited neurons and pain-inhibited neurons in the hippocampal CA3 region is not clear.. The study aimed to examine the effects of mGluR7 allosteric agonist N,N'-dibenzhydrylethane- 1,2-diamine dihydrochloride (AMN082) and antagonist 6-(4-methoxyphenyl)-5-methyl-3- pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) on the pain-evoked electrical activities of pain-excited neurons and pain-inhibited neurons in the CA3 region of rats.. A train of electric impulses applied to the sciatic nerve were used for noxious stimulation. The bio-electrical activities of pain-excited neuron or pain-inhibited neuron in the CA3 region were recorded by a glass microelectrode.. Our results exhibited that intra-CA3 region administration of the glutamic acid or AMN082 increased the pain-evoked discharged frequency and shortened the latency of pain-excited neuron, while decreased the pain-evoked discharged frequency and prolonged the inhibitory duration of paininhibited neuron in the CA3 region. The intra-CA3 region microinjection of MMPIP produced the opposite response.. These findings demonstrated that the glutamic acid and mGluR7 in hippocampal CA3 region are involved in the modulation of nociceptive information transmission by regulating pain-evoked electric activities of pain-excited neurons and pain-inhibited neurons. Topics: Analgesics, Non-Narcotic; Animals; Benzhydryl Compounds; CA3 Region, Hippocampal; Excitatory Amino Acid Agents; Glutamic Acid; Male; Microelectrodes; Neuralgia; Neurons; Nociceptive Pain; Pyridones; Rats, Wistar; Receptors, Metabotropic Glutamate; Sciatic Nerve; Synaptic Transmission | 2017 |
Metabotropic Glutamate Receptors 7 within the Nucleus Accumbens are Involved in Relief Learning in Rats.
Relief learning is an appetitive association of a formally neutral cue with relief induced by the offset of an aversive stimulus. Since the nucleus accumbens mediates relief learning and accumbal metabotropic glutamate receptors 7 (mGluR7) modulate appetitive-like processes, we hypothesized that accumbal mGluR7 may be involved in the modulation of relief learning. Therefore, we injected the allosteric mGluR7 agonist AMN082 into the nucleus accumbens and tested the effects of these injections on acquisition and expression of relief memory, as well as on the reactivity to electric stimuli. AMN082 injections blocked acquisition but not expression of relief memory. In addition, accumbal AMN082 injections strongly reduced the locomotor reactivity to electric stimuli indicating antinociceptive effects. These antinociceptive effects might be causal for the blockade of relief learning after AMN082 injections. Taken together, the present study indicates that functional activation of accumbal mGluR7 has antinociceptive effects that interfere with relief learning. Topics: Animals; Appetitive Behavior; Association Learning; Benzhydryl Compounds; Catheters, Indwelling; Electric Stimulation; Excitatory Amino Acid Agonists; Male; Memory; Motor Activity; Neuropsychological Tests; Nociceptive Pain; Nucleus Accumbens; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Reflex, Startle | 2016 |