n-methylnaloxone has been researched along with Sclerosis* in 2 studies
2 other study(ies) available for n-methylnaloxone and Sclerosis
Article | Year |
---|---|
Activation of peripheral delta opioid receptors eliminates cardiac electrical instability in a rat model of post-infarction cardiosclerosis via mitochondrial ATP-dependent K+ channels.
The effects of the selective delta-1 (delta(1)) opioid receptor agonist, DPDPE, and the selective delta(2) opioid receptor agonist, DSLET, have been studied on the ventricular fibrillation threshold (VFT) in rats with an experimental post-infarction cardiosclerosis (CS). It has been found that CS induced a significant decrease in VFT. This CS-induced decrease in VFT was significantly reversed by intravenous administration of DPDPE (0.1 mg/kg) 10 min before VFT measurement. On the contrary, intravenous injection of DSLET (0.5 mg/kg) exacerbated the CS-induced cardiac electrical instability. Pretreatment with the selective delta opioid receptor antagonist, ICI 174,864 (0.5 mg/kg), completely abolished the changes in VFT produced by both DPDPE and DSLET. Previous administration of a nonselective peripherally acting opioid receptor antagonist, naloxone methiodide (5 mg/kg) also completely reversed the antifibrillatory action of DPDPE. Naloxone methiodide and ICI 174,864 alone had no effect on VFT. Pretreatment with the nonselective K(ATP) channel blocker, glibenclamide (0.3 mg/kg), or with the mitochondrial selective K(ATP) channel blocker, 5-hydroxydecanoic acid (5-HD, 5 mg/kg), completely abolished the DPDPE-induced increase in cardiac electrical stability. Glibenclamide and 5-HD alone had no effect on VFT. These results demonstrate that the delta opioid receptor plays an important role in the regulation of electrical stability in rats with post-infarction cardiosclerosis. We propose that peripheral delta(1) opioid receptor stimulation reverses CS-induced electrical instability via mitochondrial K(ATP) channels. On the contrary, delta(2) opioid receptor stimulation may exacerbate the CS-induced decrease in VFT. Further studies are necessary to determine the delta opioid receptor subtype which mediates the antifibrillatory effect of DPDPE and pro-fibrillatory effect of DSLET. Topics: Adenosine Triphosphate; Analgesics, Opioid; Animals; Decanoic Acids; Disease Models, Animal; Drug Antagonism; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Glyburide; Hydroxy Acids; Male; Mitochondria, Heart; Myocardial Infarction; Myocardium; Naloxone; Potassium Channels; Quaternary Ammonium Compounds; Rats; Rats, Wistar; Receptors, Opioid, delta; Sclerosis; Ventricular Fibrillation | 2003 |
[Interactions of peripheral mu-opioid receptors and K(ATP)-channels in regulation of cardiac electrical stability in ischemia, reperfusion, and postinfarction cardiosclerosis].
It has been shown that mu-opioid receptor stimulation by intravenous administration of the selective mu receptor agonist DALDA in a dose of 0.1 mg/kg prevented ischemic and reperfusion arrhythmias in rats subjected to coronary artery occlusion (10 min) and reperfusion (10 min), and also increased the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis. These effects were abolished by pre-treatment with the selective mu receptor antagonist CTAP in a dose of 0.5 mg/kg or by prior injection of the opioid receptor antagonist naloxone methiodide (2 mg/kg) which does not penetrate the blood-braib barrier. Both antagonists by themselves had no effect on the incidence of occlusion or reperfusion-induced arrhythmias or on the ventricular fibrillation threshold. Pre-treatment with ATP-sensitive K+ channel (KATP channel) blocker glibenclamide in a dose of 0.3 mg/kg completely abolished the antiarrhythmic effect of DALDA. We believe that DALDA prevents occurrence of electrical instability during ischemia and reperfusion and increases the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis via stimulation of peripheral mu-opioid receptor which appear to be coupled to the KATP channel. Topics: Animals; Electrocardiography; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Naloxone; Oligopeptides; Peptide Fragments; Peptides; Potassium Channels; Quaternary Ammonium Compounds; Rats; Rats, Wistar; Receptors, Opioid, mu; Sclerosis; Somatostatin | 2002 |