n-methylnaloxone has been researched along with Inflammation* in 7 studies
7 other study(ies) available for n-methylnaloxone and Inflammation
Article | Year |
---|---|
Peripheral Opioid Receptor Blockade Enhances Epithelial Damage in Piroxicam-Accelerated Colitis in IL-10-Deficient Mice.
Mucosal CD4 Topics: Animals; Anti-Inflammatory Agents; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; CD4-Positive T-Lymphocytes; Colitis; Cytokines; Epithelial Cells; Inflammation; Interleukin-10; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Mice, Knockout; Naloxone; Narcotic Antagonists; Permeability; Piroxicam; Quaternary Ammonium Compounds; Receptors, Opioid; Severity of Illness Index | 2021 |
TRPV1 promotes opioid analgesia during inflammation.
Pain and inflammation are inherently linked responses to injury, infection, or chronic diseases. Given that acute inflammation in humans or mice enhances the analgesic properties of opioids, there is much interest in determining the inflammatory transducers that prime opioid receptor signaling in primary afferent nociceptors. Here, we found that activation of the transient receptor potential vanilloid type 1 (TRPV1) channel stimulated a mitogen-activated protein kinase (MAPK) signaling pathway that was accompanied by the shuttling of the scaffold protein β-arrestin2 to the nucleus. The nuclear translocation of β-arrestin2 in turn prevented its recruitment to the μ-opioid receptor (MOR), the subsequent internalization of agonist-bound MOR, and the suppression of MOR activity that occurs upon receptor desensitization. Using the complete Freund's adjuvant (CFA) inflammatory pain model to examine the role of TRPV1 in regulating endogenous opioid analgesia in mice, we found that naloxone methiodide (Nal-M), a peripherally restricted, nonselective, and competitive opioid receptor antagonist, slowed the recovery from CFA-induced hypersensitivity in wild-type, but not TRPV1-deficient, mice. Furthermore, we showed that inflammation prolonged morphine-induced antinociception in a mouse model of opioid receptor desensitization, a process that depended on TRPV1. Together, our data reveal a TRPV1-mediated signaling pathway that serves as an endogenous pain-resolution mechanism by promoting the nuclear translocation of β-arrestin2 to minimize MOR desensitization. This previously uncharacterized mechanism may underlie the peripheral opioid control of inflammatory pain. Dysregulation of the TRPV1-β-arrestin2 axis may thus contribute to the transition from acute to chronic pain. Topics: Acute Pain; Analgesia; Analgesics, Opioid; Animals; beta-Arrestin 2; Chronic Pain; Disease Models, Animal; Freund's Adjuvant; Humans; Inflammation; Mice; Mice, Knockout; Naloxone; Narcotic Antagonists; Quaternary Ammonium Compounds; Signal Transduction; TRPV Cation Channels | 2019 |
Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice.
Topics: Analgesia; Analgesics, Opioid; Animals; Antigens, Ly; Carrageenan; Female; Inflammation; Macrophages; Mice; Morpholines; Naloxone; Narcotic Antagonists; Neutrophils; Oligopeptides; Pain; Piperazines; Pro-Opiomelanocortin; Pyrazoles; Quaternary Ammonium Compounds; Receptors, sigma; Sigma-1 Receptor | 2017 |
JAK-STAT1/3-induced expression of signal sequence-encoding proopiomelanocortin mRNA in lymphocytes reduces inflammatory pain in rats.
Proopiomelanocortin (POMC)-derived beta-endorphin1-31 from immune cells can inhibit inflammatory pain. Here we investigated cytokine signaling pathways regulating POMC gene expression and beta-endorphin production in lymphocytes to augment such analgesic effects.. Interleukin-4 dose-dependently elevated POMC mRNA expression in naïve lymph node-derived cells in vitro, as determined by real-time PCR. This effect was neutralized by janus kinase (JAK) inhibitors. Transfection of Signal Transducer and Activator of Transcription (STAT) 1/3 but not of STAT6 decoy oligonucleotides abolished interleukin-4 induced POMC gene expression. STAT3 was phosphorylated in in vitro interleukin-4 stimulated lymphocytes and in lymph nodes draining inflamed paws in vivo. Cellular beta-endorphin increased after combined stimulation with interleukin-4 and concanavalin A. Consistently, in vivo reduction of inflammatory pain by passively transferred T cells improved significantly when donor cells were pretreated with interleukin-4 plus concanavalin A. This effect was blocked by naloxone-methiodide.. Interleukin-4 can amplify endogenous opioid peptide expression mediated by JAK-STAT1/3 activation in mitogen-activated lymphocytes. Transfer of these cells leads to inhibition of inflammatory pain via activation of peripheral opioid receptors. Topics: Animals; Cells, Cultured; Concanavalin A; Inflammation; Interleukin-4; Janus Kinase 3; Lymphocytes; Male; Naloxone; Pain; Pro-Opiomelanocortin; Quaternary Ammonium Compounds; Rats; Rats, Wistar; RNA, Messenger; STAT1 Transcription Factor; STAT3 Transcription Factor | 2012 |
Spinal and peripheral mechanisms involved in the enhancement of morphine analgesia in acutely inflamed mice.
The analgesic effect induced by opiates is often potentiated during experimental inflammatory processes. We describe here that lower doses of systemic morphine are necessary to increase thermal withdrawal latencies measured in both hind paws of mice acutely inflamed with carrageenan than in healthy ones. This bilateral potentiation seems mediated through spinal opioid receptors since it is inhibited by the intrathecal (i.t.), but not intraplantar (i.pl.) administration of the opioid receptor antagonist naloxone-methiodide, and also appears when morphine is i.t. administered. Furthermore, the i.pl. administration of the nitric oxide (NO) synthase inhibitor, L-NMMA, or the K (ATP) (+) -channel blocker, glibenclamide, to carrageenan-inflamed mice inhibits the enhanced effect of systemic morphine in the paw that receives the injection of the drug, without affecting the potentiation observed in the contralateral one. The i.pl. administration of L-NMMA also partially antagonised the analgesic effect induced by i.t. morphine in inflamed mice. Finally, the increased analgesic effect evoked by the i.pl. administration of the NO donor SIN-1 either in the inflamed or in the contralateral paw of carrageenan-inflamed mice suggests that enhanced responsiveness to the peripheral analgesic effect of NO may be also underlying the bilateral potentiation of morphine-induced analgesia in acutely inflamed mice. Topics: Acute Disease; Analgesia; Animals; Carrageenan; Glyburide; Inflammation; Injections, Spinal; Mice; Molsidomine; Morphine; Naloxone; Nociceptors; omega-N-Methylarginine; Pain; Quaternary Ammonium Compounds; Spinal Cord; Temperature | 2010 |
Contralateral but not systemic administration of the kappa-opioid agonist U-50,488H induces anti-nociception in acute hindpaw inflammation in rats.
1. The anti-nociceptive effects of contralateral administration of kappa-opioid agonist U-50,488H were investigated in rats. 2. Inflammation was induced by unilateral injection of 1% carrageenan into the right hindpaw. Prior to carrageenan injection, U-50,488H or saline was administered into the left hindpaw. Withdrawal responses to mechanical and heat stimulation and oedema levels were evaluated at 3, 6 and 24 h post-carrageenan injection. 3. The results showed that the inflammatory effect of 1% carrageenan peaked after 6 h with bilateral decreases in withdrawal latencies and ipsilateral oedema formation. 4. Contralateral treatment with 0.01, 0.05, 0.3 and 2 mg of U-50,488H attenuated nociceptive reflexes to mechanical stimulation on the inflamed side at 6 h. The anti-nociceptive effect of contralateral treatment was dose-dependent at 3 and 24 h. The hindpaw withdrawal latencies to heat stimulation were prolonged at 3 and 24 h after contralateral treatment with 0.3 mg U-50,488H. No effect on inflammatory oedema formation was observed, except for a decrease at 3 h after treatment with 2 mg of U-50,488H. 5. Sciatic nerve denervation on the contralateral side abolished the anti-nociceptive effects of U-50,488H (0.3 and 2 mg). In contrast, contralateral injection of 1 mg morphine prolonged paw latencies in denervated rats. 6. Both co-administration of the peripherally selective opioid antagonist naloxone methiodide with 0.3 mg U-50,488H, and alternatively, systemic administration of 0.3 mg U-50,488H reversed the anti-nociceptive effects induced by contralateral injection of U-50,488H. 7. Taken together, our findings indicate that the contralateral administration of U-50,488H attenuates nociceptive behaviour resulting from acute inflammation. The effect is mediated via peripheral neuronal kappa-opioid receptors and, possibly, spinal cord mechanisms, suggesting a new treatment approach for acute inflammatory conditions. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acute Disease; Analgesics, Opioid; Animals; Behavior, Animal; Denervation; Hindlimb; Hot Temperature; Inflammation; Male; Naloxone; Pain; Pain Measurement; Physical Stimulation; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Sciatic Nerve | 2001 |
Antinociceptive response induced by mixed inhibitors of enkephalin catabolism in peripheral inflammation.
RB101 (N-((R,S)-2-benzyl-3[(S)(2-amino-4-methylthio)butyl dithio]-1-ox-opropyl)-L-phenylalanine benzyl ester) is a recently developed full inhibitor of the enkephalin-catabolizing enzymes able to cross the blood-brain barrier, whereas RB38A ((R)-3-(N-hydroxycarboxamido-2-benzylpropanoyl)-L-phenylalanine) is as potent as RB101 but almost unable to enter the brain. In this study, we have investigated the effects of systemic administration of morphine, RB101 and RB38A on nociception induced by pressure on inflamed peripheral tissues. Antinociceptive test was performed between 4 and 5 days after injection into the rat left hindpaw of Freund's complete adjuvant to produce localized inflammation. Morphine (1, 2 and 4 mg/kg, i.v.) induced antinociception in inflamed paws at all the doses used, and only at the highest dose in non-inflamed paws. RB101 (10 and 20 mg/kg, i.v.) induced an antinociceptive response only in the inflamed paws. RB38A, also induced an antinociceptive effect in the inflamed paws, but only at the highest dose (20 mg/kg, i.v.). The responses induced by morphine and the inhibitors of enkephalin catabolism were antagonized by the systemic administration of naloxone (1 mg/kg) or methylnaloxonium (2 mg/kg) which acts essentially outside the brain. Central injection (i.c.v.) of methylnaloxonium (2 micrograms) blocked the effect of morphine only in non-inflamed paws, and slightly decreased the response induced by RB101 on inflamed paws. These results indicate that the endogenous opioid peptides, probably enkephalins, are important in the peripheral control of nociception from inflamed tissues. Topics: Analgesics; Animals; Disulfides; Enkephalins; Hydroxamic Acids; Inflammation; Injections, Intraventricular; Male; Morphine; Naloxone; Narcotic Antagonists; Neprilysin; Pain; Pain Measurement; Phenylalanine; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley | 1994 |