n-hydroxy-n--(4-butyl-2-methylphenyl)formamidine has been researched along with Brain-Neoplasms* in 3 studies
3 other study(ies) available for n-hydroxy-n--(4-butyl-2-methylphenyl)formamidine and Brain-Neoplasms
Article | Year |
---|---|
Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies.
Glioblastoma (GBM) is one hypervascular and hypoxic tumor known among solid tumors. Antiangiogenic therapeutics (AATs) have been tested as an adjuvant to normalize blood vessels and control abnormal vasculature. Evidence of relapse exemplified in the progressive tumor growth following AAT reflects development of resistance to AATs. Here, we identified that GBM following AAT (Vatalanib) acquired an alternate mechanism to support tumor growth, called vascular mimicry (VM). We observed that Vatalanib induced VM vessels are positive for periodic acid-Schiff (PAS) matrix but devoid of any endothelium on the inner side and lined by tumor cells on the outer-side. The PAS+ matrix is positive for basal laminae (laminin) indicating vascular structures. Vatalanib treated GBM displayed various stages of VM such as initiation (mosaic), sustenance, and full-blown VM. Mature VM structures contain red blood cells (RBC) and bear semblance to the functional blood vessel-like structures, which provide all growth factors to favor tumor growth. Vatalanib treatment significantly increased VM especially in the core of the tumor, where HIF-1α was highly expressed in tumor cells. VM vessels correlate with hypoxia and are characterized by co-localized MHC-1+ tumor and HIF-1α expression. Interestingly, 20-HETE synthesis inhibitor HET0016 significantly decreased GBM tumors through decreasing VM structures both at the core and at periphery of the tumors. In summary, AAT induced resistance characterized by VM is an alternative mechanism adopted by tumors to make functional vessels by transdifferentiation of tumor cells into endothelial-like cells to supply nutrients in the event of hypoxia. AAT induced VM is a potential therapeutic target of the novel formulation of HET0016. Our present study suggests that HET0016 has a potential to target therapeutic resistance and can be combined with other antitumor agents in preclinical and clinical trials. Topics: Amidines; Angiogenesis Inhibitors; Animals; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Neovascularization, Pathologic; Phthalazines; Protein Kinase Inhibitors; Pyridines; Rats; Rats, Nude | 2017 |
9L gliosarcoma cell proliferation and tumor growth in rats are suppressed by N-hydroxy-N'-(4-butyl-2-methylphenol) formamidine (HET0016), a selective inhibitor of CYP4A.
The present study examined the effects of N-hydroxy-N'-(4-butyl-2 methylphenyl) formamidine (HET0016), a selective inhibitor of the formation of 20-hydroxyeicosatrienoic acid (20-HETE) on the growth of 9L rat gliosarcoma cells in vitro and in vivo. After 48 h of incubation, HET0016 reduced the proliferation of 9L in vitro by 55%, and this was associated with a fall in p42/p44 mitogen-activated protein kinase and stress-activated protein kinase/c-Jun NH(2)-terminal kinase phosphorylation and increased apoptosis. HET0016 inhibited epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)-induced proliferation and diminished phosphorylation of PDGF receptors. A stable 20-HETE analog increased 9L cell proliferation. In vivo, chronic administration of HET0016 (10 mg/kg/day i.p.) for 2 weeks reduced the volume of 9L tumors by 80%. This was accompanied by a 4-fold reduction in the mitotic index, a 3- to 4-fold increase in the apoptotic index, and a approximately 50% decrease in vascularization in the tumor. HET0016 treatment increased mean survival time of the animals from 17 to 22 days. Liquid chromatography/mass spectrometry experiments indicated that neither 9L cells grown in vitro nor 9L tumors removed produce 20-HETE when incubated with arachidonic acid. The normal surrounding brain tissue, however, avidly makes 20-HETE, and this activity is selectively inhibited by HET0016. These results suggest that HET0016 may be the prototype of a class of antigrowth compounds that may be efficacious for treating malignant brain tumors. In vivo, it may act in part by inhibiting the formation of 20-HETE by the surrounding tissue. However, the antiproliferative effects of HET0016 on 9L cells in vitro seem unrelated to its ability to inhibit the formation of 20-HETE. Topics: Amidines; Animals; Apoptosis; Arachidonic Acid; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cerebral Cortex; Cytochrome P-450 CYP4A; Enzyme Inhibitors; Gliosarcoma; Male; Neoplasm Transplantation; Rats; Rats, Inbred F344 | 2006 |
Human U251 glioma cell proliferation is suppressed by HET0016 [N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine], a selective inhibitor of CYP4A.
We have previously reported that HET0016 [N-hydroxy-N'-(4-butyl-2 methylphenyl)formamidine], a selective inhibitor of CYP4A and thus 20-HETE (20-hydroxyeicosatetraenoic acid) synthesis, inhibits endothelial cell proliferation and decreases angiogenesis induced by human glioma cell U251. A stable 20-HETE agonist, WIT003 [20-hydroxyeicosa-5(Z),14(Z)-dienoic acid (1 microM)], increased U251 cell proliferation from 3.9- to 4.8-folds from T(0) (time of the treatment). We examined the effects of HET0016 on the growth of U251. HET0016 inhibited U251 basal cell proliferation in a dose-dependent manner. 10 microM HET0016 suppressed 56% of U251 proliferation and significantly increased the proportions of the cells arrested in the G(0)/G(1) phase of the cell cycle. Exposure to HET0016 (as early as 4 h) reduced protein tyrosine and p42/p44 MAPK (mitogen-activated protein kinase) phosphorylation. Furthermore, HET0016 significantly inhibited the U251 proliferation and phosphorylation of both the epidermal growth factor (EGF) receptor and p42/p44 MAPK induced by EGF. CYP4A mRNA and proteins were both present in U251. This suggests that HET0016 inhibited U251 proliferation by inhibiting 20-HETE synthesis. However, U251 did not synthesize 20-HETE in the presence of arachidonic acid. This implies that HET0016 suppresses U251 proliferation by mechanisms that are not yet clear but may involve activities other than inhibition of 20-HETE synthesis. We concluded that HET0016 may be the prototype of novel compounds that suppress human glioma cell proliferation. Topics: Amidines; Antineoplastic Agents; Arachidonic Acid; Blotting, Western; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP4A; DNA Fragmentation; Enzyme Inhibitors; ErbB Receptors; Flow Cytometry; Glioma; Humans; Hydroxyeicosatetraenoic Acids; In Situ Nick-End Labeling; Mitogen-Activated Protein Kinase 1; Mitosis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Neoplasm; Signal Transduction; Thymidine | 2005 |