n-caproylsphingosine has been researched along with Adenocarcinoma* in 4 studies
4 other study(ies) available for n-caproylsphingosine and Adenocarcinoma
Article | Year |
---|---|
Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma.
In vitro tumor cell culture models have illuminated the potential therapeutic utility of elevating the intracellular concentration of the antimitogenic and proapoptotic sphingolipid, ceramide. However, although cell-permeable, short-chain ceramide is an effective apoptotic agent in vitro, its use as an in vivo, systemically delivered therapeutic is limited by its inherent lipid hydrophobicity and physicochemical properties. Here, we report that the systemic i.v. delivery of C6-ceramide (C6) in a pegylated liposomal formulation significantly limited the growth of solid tumors in a syngeneic BALB/c mouse tumor model of breast adenocarcinoma. Over a 3-week treatment period, a well-tolerated dose of 36 mg/kg liposomal-C6 elicited a >6-fold reduction in tumor size compared with empty ghost liposomes. Histologic analyses of solid tumors from liposomal-C6-treated mice showed a marked increase in the presence of apoptotic cells, with a coincident decrease in cellular proliferation and in the development of a microvessel network. Liposomal-C6 accumulated within caveolae and mitochondria, suggesting putative mechanisms by which ceramide induces selective cancer cell cytotoxicity. A pharmacokinetic analysis of systemic liposomal-C6 delivery showed that the pegylated liposomal formulation follows first-order kinetics in the blood and achieves a steady-state concentration in tumor tissue. Confirming the therapeutic utility of i.v. liposomal-C6 administration, we also shown diminution of solid tumor growth in a human xenograft model of breast cancer. Together, these results indicate that bioactive ceramide analogues can be incorporated into pegylated liposomal vehicles for improved solubility, drug delivery, and antineoplastic efficacy. Topics: Adenocarcinoma; Animals; Apoptosis; Caveolae; Cell Line; Cell Line, Tumor; Cell Proliferation; Cell Survival; Ceramides; Dose-Response Relationship, Drug; Female; Humans; Injections, Intravenous; Liposomes; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Mice, Nude; Microscopy, Confocal; Mitochondria; Neovascularization, Pathologic; Xenograft Model Antitumor Assays | 2005 |
Ceramide accumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells.
Ceramide, the basic structural unit of sphingolipids, controls the balance between cell growth and death by inducing apoptosis. We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H(2)O(2)) or by short-chain ceramide analogs, induces apoptosis of lung epithelial cells. Here we elucidate the link between caspase-3 activation, at the execution phase, and ceramide accumulation, at the commitment phase of apoptosis in A549 human lung adenocarcinoma cells. The induction of ceramide accumulation by various triggers of ceramide generation, such as H(2)O(2), C(6)-ceramide, or UDP-glucose-ceramide glucosyltransferase inhibitor dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, triggered the activation of caspase-3. This ceramide elevation also induced the cleavage of the death substrate poly(ADP-ribose) polymerase and was followed by apoptotic cell death. Ceramide-mediated apoptosis was blocked by a general caspase inhibitor, Boc-d-fluoromethylketone, and by overexpression of the antiapoptotic protein Bcl-2. Notably, overexpression of Bcl-2 reduced the basal cellular levels of ceramide and prevented the induction of ceramide generation by C(6)-ceramide, which implies ceramide generation as a possible target for the antiapoptotic effects of Bcl-2. Topics: Adenocarcinoma; Apoptosis; Caspase 3; Caspases; Ceramides; Enzyme Activation; Enzyme Inhibitors; Gene Expression; Humans; Hydrogen Peroxide; Lung Neoplasms; Morpholines; Oxidants; Proto-Oncogene Proteins c-bcl-2; Tumor Cells, Cultured | 2003 |
Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells.
This study was designed to analyze whether ceramide, a bioeffector of growth suppression, plays a role in the regulation of telomerase activity in A549 cells. Telomerase activity was inhibited significantly by exogenous C(6)-ceramide, but not by the biologically inactive analog dihydro-C(6)-ceramide, in a time- and dose-dependent manner, with 85% inhibition produced by 20 microm C(6)-ceramide at 24 h. Moreover, analysis of phosphatidylserine translocation from the inner to the outer plasma membrane by flow cytometry and of poly(ADP-ribose) polymerase degradation by Western blotting showed that ceramide treatment (20 microm for 24 h) had no apoptotic effects. Trypan blue exclusion, [(3)H]thymidine incorporation, and cell cycle analyses, coupled with clonogenic cell survival assay on soft agar, showed that ceramide treatment with a 20 microm concentration at 24 h resulted in the cell cycle arrest of the majority of the cell population at G(0)/G(1) with no detectable cell death. These results suggest that the inhibition of telomerase by ceramide is not a consequence of cell death but is correlated with growth arrest. Next, to determine the role of endogenous ceramide in telomerase modulation, A549 cells were transiently transfected with an expression vector containing the full-length bacterial sphingomyelinase cDNA (b-SMase). The overexpression of b-SMase, but not exogenously applied purified b-SMase enzyme, resulted in significantly decreased telomerase activity compared with controls, showing that the increased endogenous ceramide is sufficient for telomerase inhibition. Moreover, treatment of A549 cells with daunorubicin at 1 microm for 6 h resulted in the inhibition of telomerase, which correlated with the elevation of endogenous ceramide levels and growth arrest. Finally, stable overexpression of human glucosylceramide synthase, which attenuates ceramide levels by converting ceramide to glucosylceramide, prevented the inhibitory effects of C(6)-ceramide and daunorubicin on telomerase. Therefore, these results provide novel data showing for the first time that ceramide is a candidate upstream regulator of telomerase. Topics: Adenocarcinoma; Blotting, Western; Cell Membrane; Ceramides; Daunorubicin; Dose-Response Relationship, Drug; Flow Cytometry; G1 Phase; Glucosylceramides; Glucosyltransferases; Humans; Lung Neoplasms; Phosphatidylserines; Poly(ADP-ribose) Polymerases; Resting Phase, Cell Cycle; Sphingomyelin Phosphodiesterase; Telomerase; Time Factors; Transfection; Tumor Cells, Cultured | 2001 |
Molecular mechanisms of ceramide-mediated telomerase inhibition in the A549 human lung adenocarcinoma cell line.
This study was aimed at identifying the molecular mechanisms by which ceramide inhibits telomerase activity in the A549 human lung adenocarcinoma cell line. C(6)-ceramide (20 microm) caused a significant reduction of telomerase activity at 24 h as detected using the telomeric repeat amplification protocol, and this inhibition correlated with decreased telomerase reverse transcriptase (hTERT) protein. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Northern blot analyses showed that C(6)-ceramide significantly decreased hTERT mRNA in a time-dependent manner. Electrophoretic mobility shift and supershift assays demonstrated that the binding activity of c-Myc transcription factor to the E-box sequence on the hTERT promoter was inhibited in response to C(6)-ceramide at 24 h. These results were also confirmed by transient transfections of A549 cells with pGL3-Basic plasmid constructs containing the functional hTERT promoter and its E-box deleted sequences cloned upstream of a luciferase reporter gene. Further analysis using RT-PCR and Western blotting showed that c-Myc protein but not its mRNA levels were decreased in response to C(6)-ceramide at 24 h. The effects of ceramide on the c-Myc protein were shown to be due to a reduction in half-life via increased ubiquitination. Similar results were obtained by increased endogenous ceramide levels in response to nontoxic concentrations of daunorubicin, resulting in the inhibition of telomerase and c-Myc activities. Furthermore, the elevation of endogenous ceramide by overexpression of bacterial sphingomyelinase after transient transfections also induced the inhibition of telomerase activity with concomitant decreased hTERT and c-Myc protein levels. Taken together, these results show for the first time that both exogenous and endogenous ceramides mediate the modulation of telomerase activity via decreased hTERT promoter activity caused by rapid proteolysis of the ubiquitin-conjugated c-Myc transcription factor. Topics: Adenocarcinoma; Ceramides; Cycloheximide; DNA-Binding Proteins; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Genes, myc; Genes, Reporter; Half-Life; Humans; Luciferases; Lung Neoplasms; Promoter Regions, Genetic; Proto-Oncogene Proteins c-myc; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Telomerase; Transcription, Genetic; Transfection; Tumor Cells, Cultured; Ubiquitins | 2001 |