n-acetylcarnosine has been researched along with Cataract* in 25 studies
9 review(s) available for n-acetylcarnosine and Cataract
Article | Year |
---|---|
N-acetylcarnosine (NAC) drops for age-related cataract.
Cataract is the leading cause of world blindness. The only available treatment for cataract is surgery. Surgery requires highly-trained individuals with expensive operating facilities. Where these are not available, patients go untreated. A form of treatment that did not involve surgery would be a useful alternative for people with symptomatic cataract who are unable or unwilling to undergo surgery. If an eye drop existed that could reverse or even prevent progression of cataract, then this would be a useful additional treatment option.Cataract tends to result from oxidative stress. The protein, L-carnosine, is known to have an antioxidant effect on the cataractous lens, so biochemically there is sound logic for exploring L-carnosine as an agent to reverse or even prevent progression of cataract. When applied as an eye drop, L-carnosine cannot penetrate the eye. However, when applied to the surface of the eye, N-acetylcarnosine (NAC) penetrates the cornea into the front chamber of the eye (near to where the cataract is), where it is metabolised into L-carnosine. Hence, it is possible that use of NAC eye drops may reverse or even prevent progression of cataract, thereby improving vision and quality of life.. To assess the effectiveness of NAC drops to prevent or reverse the progression of cataract.. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2016), Embase (January 1980 to June 2016), Allied and Complementary Medicine Database (AMED) (January 1985 to June 2016), Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to June 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 28 June 2016. We handsearched the American Society of Cataract and Refractive Surgery (ASCRS) and the European Society of Cataract and Refractive Surgeons (ESCRS) meetings from 2005 until September 2015.. We planned to include randomized or quasi-randomised controlled trials where NAC was compared to control in people with age-related cataract.. We used standard methodological procedures expected by Cochrane.. We identified two potentially eligible studies from Russia and the United States. One study was split into two arms: the first arm ran for six months, with two-monthly follow-up; the second arm ran for two years with six-monthly follow-up. The other study ran for four months with a data collection point at the start and end of the study only. A total of 114 people were enrolled in these studies. The ages ranged from 55 to 80 years.We were unable to obtain sufficient information to reliably determine how both these studies were designed and conducted. We have contacted the author of these studies, but have not yet received a reply. Therefore, these studies are assigned as 'awaiting classification' in the review until sufficient information can be obtained from the authors.. There is currently no convincing evidence that NAC reverses cataract, nor prevents progression of cataract (defined as a change in cataract appearance either for the better or for the worse). Future studies should be randomized, double-masked, placebo-controlled trials with standardised quality of life outcomes and validated outcome measures in terms of visual acuity, contrast sensitivity and glare, and large enough to detect adverse effects. Topics: Aged; Aged, 80 and over; Aging; Carnosine; Cataract; Disease Progression; Humans; Middle Aged; Ophthalmic Solutions; Randomized Controlled Trials as Topic | 2017 |
Telomere Attrition in Human Lens Epithelial Cells Associated with Oxidative Stress Provide a New Therapeutic Target for the Treatment, Dissolving and Prevention of Cataract with N-Acetylcarnosine Lubricant Eye Drops. Kinetic, Pharmacological and Activity-
Visual impairment broadly impacts the ability of affected people to maintain their function and to remain independent during their daily occupations as they grow older. Visual impairment affects survival of older patients, quality of life, can affect a person's self-ranking of health, may be associated with social and functional decline, use of community support services, depression, falls, nursing home placement, and increased mortality. It has been hypothesized that senile cataract may serve as a marker for generalised tissue aging, since structural changes occurring in the proteins of the lens during cataract formation are similar to those which occur elsewhere as part of the aging process. The published analysis revealed a strong age-dependent relationship between undergoing cataract surgery and subsequent mortality.. Nuclear opacity, particularly severe nuclear opacity, and mixed opacities with nuclear were significant predictors of mortality independent of body mass index, comorbid conditions, smoking, age, race, and sex. The lens opacity status is considered as an independent predictor of 2-year mortality, an association that could not be explained by potential confounders. Telomeres have become important biomarkers for aging as well as for oxidative stress-related disease. The lens epithelium is especially vulnerable to oxidative stress. Oxidative damage to the cuboidal epithelial cells on the anterior surface of the lens mediated by reactive oxygen species and phospholipid hydroperoxides can precede and contribute to human lens cataract formation. The erosion and shortening of telomeres in human lens epithelial cells in the lack of telomerase activity has been recognized as a primary cause of premature lens senescence phenotype that trigger human cataractogenesis. In this study we aimed to be focused on research defining the mechanisms that underlie linkages among telomere attrition in human lens epithelial cells associated with oxidative stress, biology of the lens response to oxidative damages, aging and health, cataract versus neuroendocrine regulation and disease. The cumulative results demonstrate that carnosine, released ophthalmically from the patented 1% Nacetylcarnosine prodrug lubricant eye drops, at physiological concentration might remarkably reduce the rate of telomere shortening in the lens cells subjected to oxidative stress in the lack of efficient antioxidant lens protection. Carnosine promotes the protection of normal cells from acquiring phenotypic characteristics of cellular senescence. The data of visual functions (visual acuity, glare sensitivity) in older adult subjects and older subjects with cataract treated with 1% N-acetylcarnosine lubricant eye drops showed significant improvement as compared, by contrast with the control group which showed generally no improvement in visual functions, with no difference from baseline in visual acuity and glare sensitivity readings.. N-acetylcarnosine derived from the lubricant eye drops may be transported into the hypothalamic tuberomammillary nucleus (TMN) histamine neurons and gradually hydrolyzed. The resulting L-histidine may subsequently be converted into histamine, which could be responsible for the effects of carnosine on neurotransmission and hormone-like antiaging and anti-cataract physiological function.. The research utilizing the N-acetylcarnosine lubricant eye drops powerful therapeutic platform provides the findings related to the intraocular uptake exposure sources as well as a timing dosage and duration systemic absorption of said preparation from the conjunctional sac reaching the hypothalamus with activities transfer into the hypothalamic-neuroendocrine pathways affecting across the hypothalamus metabolic pathway the telomere biology and cataract disease occurrence, reversal and prevention and the average expected lifespan of an individual. Such findings can be translated into clinical practice and may provide a basis for personalized cataract disease and aging prevention and treatment approaches. Topics: Administration, Ophthalmic; Age Factors; Aging; Animals; Antioxidants; Carnosine; Cataract; Cornea; Drug Compounding; Drug Delivery Systems; Epithelial Cells; Humans; Lens, Crystalline; Ocular Absorption; Ophthalmic Solutions; Oxidative Stress; Solubility; Telomere Homeostasis | 2016 |
Biomarkers of oxidative stress and cataract. Novel drug delivery therapeutic strategies targeting telomere reduction and the expression of telomerase activity in the lens epithelial cells with N-acetylcarnosine lubricant eye drops: anti-cataract which hel
Cataracts in small animals are shown to be at least partially caused by oxidative damage to lens epithelial cells (LECs) and the internal lens; biomarkers of oxidative stress in the lens are considered as general biomarkers for life expectancy in the canine and other animals. Telomeres lengths and expressed telomerase activity in canine LECs may serve as important monitors of oxidative damage in normal LECs with documented higher levels of telomerase activity in cataractous LECs during cells' lifespan. Loss of functional telomere length below a critical threshold in LECs of canines during the effect of UV and chronic oxidative stress or metabolic failure, can activate programs leading to LEC senescence or death. Telomerase is induced in LECs of canines at critical stages of cataractogenesis initiation and exposure to oxidative stress through the involvement of catalytically active prooxidant transition metal (iron) ions. This work documents that transition metal ions (such as, ferrous ions- catalytic oxidants) might induce premature senescence in LECs of canines, telomere shortening with increased telomerase activity as adaptive response to UV light, oxidative and metabolic stresses. The therapeutic treatment with 1% N-acetylcarnosine (NAC) prodrug delivery is beneficial for prevention and dissolution of ripe cataracts in canines. This biological activity is based on the findings of ferroxidase activity pertinent to the dipeptide carnosine released ophthalmically from NAC prodrug of L-carnosine, stabilizing properties of carnosine on biological membranes based on the ability of the imidazole-containing dipeptides to interact with lipid peroxidation products and reactive oxygen species (ROS), to prevent membrane damage and delute the associated with membrane fragements protein aggregates. The advent of therapeutic treatment of cataracts in canines with N-acetylcarnosine lubricant eye drops through targeting the prevention of loss of functional telomere length below a critical threshold and "flirting" with an indirect effect with telomerase expression in LECs of canines during the effects of UV, chronic oxidative stress increases the successful rate of cataract management challenges in home veterinary care. Topics: Administration, Ophthalmic; Animals; Antioxidants; Biomarkers; Carnosine; Cataract; Cell Membrane; Cellular Senescence; Ceruloplasmin; Chemistry, Pharmaceutical; Dogs; Drug Carriers; Epithelial Cells; Lens, Crystalline; Ophthalmic Solutions; Oxidative Stress; Prodrugs; Technology, Pharmaceutical; Telomerase; Telomere | 2014 |
Novel intraocular and systemic absorption drug delivery and efficacy of N-acetylcarnosine lubricant eye drops or carcinine biologics in pharmaceutical usage and therapeutic vision care.
The latest estimates of the World Health Organization indicate that there are 161 million visually impaired individuals worldwide, 37 million of whom are blind, with a yearly increase of 1-2 million. The scientists developed and patented the lubricant eye drops formulated as 1%N-acetylcarnosine prodrug of l-carnosine containing a mucoadhesive cellulose-based compound combined with corneal absorption promoters in an ocular drug delivery system. Carcinine is suitable for the systemic administration (per oral) for ophthalmic therapeutic indications. The HPLC analysis was developed to search the pathways of ocular metabolic activities of 1%N-acetylcarnosine and the bioactivation of this drug molecule promoting transcorneal uptake of l-carnosine in the aqueous humor. A meta-analysis of phase 2 randomized double-blind placebo-controlled clinical trial data was conducted. The intraocular absorbed l-carnosine demonstrated a number of pharmacological mechanisms of prevention and reversal of cataracts. Results of systemic absorption of l-carnosine provide tuberomammillary activation that regulates neuronal functions such as hypothalamic control promoting sensory input in the primary vision perceptual pathway. The parabulbar, subconjunctival, and intravitreal injection of carcinine with most of the vehicle removed is not toxic to intraocular structures, reduces postoperative intraocular inflammation, is a potentially useful tool in the treatment of proliferative vitreoretinopathy as well as considered as the antiapoptotic drug for the protection of photoreceptor cells from oxidative light-induced stress. The discovery of naturally occurring carnosine derivatives introduces N-acetylcarnosine and carcinine as effective medical treatment for sight-threatening eye disorders. Topics: Administration, Ophthalmic; Animals; Carnosine; Cataract; Chromatography, High Pressure Liquid; Clinical Trials, Phase II as Topic; Drug Delivery Systems; Eye Diseases; Humans; Prodrugs; Randomized Controlled Trials as Topic; Vitreoretinopathy, Proliferative | 2012 |
Biomarkers and special features of oxidative stress in the anterior segment of the eye linked to lens cataract and the trabecular meshwork injury in primary open-angle glaucoma: challenges of dual combination therapy with N-acetylcarnosine lubricant eye d
The implication of oxidative stress associated with increased oxidant production in mammalian and human cells characterized by the release of free radicals, resulting in cellular degeneration, is involved in many ocular diseases, such as age-related macular degeneration, retinopathy of prematurity, retinal light damage, primary open-angle glaucoma (POAG), and cataract. Cataract is the leading cause of blindness, accounting for 50% of blindness worldwide. Glaucoma, the leading cause of irreversible blindness, is considered as a progressive optic neuropathy often caused by elevated intraocular pressure (IOP) consequent to abnormally high resistance to aqueous humor (AH) drainage via the trabecular meshwork (TM) and Schlemm's canal. Morphological and biochemical analyses of the TM of patients with POAG revealed the loss of cells, increased accumulation of extracellular matrix proteins (ECM), changes in the cytoskeleton, cellular senescence, and the process of subclinical inflammation. The TM is the target tissue of glaucoma in the anterior chamber, and the development and progression of glaucoma are accompanied by the accumulation of oxidative damage in this tissue. The separate studies were conducted to comparatively evaluate the sensitivity to oxidative stress and lipid peroxidation (LPO) of anterior chamber tissues including TM. Accumulation of the primary, secondary, and end products of LPO (diene and triene conjugates, Schiff's bases) was noted in the studied extracts. Significant differences in the levels of all mentioned LPO products in comparison with the control were observed. The data may be considered as an evidence of LPO participation in the destruction of the trabecule and Schlemm's canal in POAG. Treatment of TM cells with oxidative stress induced POAG-typical changes such as ECM accumulation, cell death, disarrangement of the cytoskeleton, advanced senescence, and the release of inflammatory markers. By pretreatment with antioxidants, prostaglandin analogs, beta-blockers, or local carbonic anhydrase inhibitors, these effects were markedly reduced. Oxidative stress can induce characteristic glaucomatous TM changes, and these oxidative stress-induced TM changes can be minimized by the use of antioxidants and IOP-lowering substances. It is tempting to speculate that the prevention of oxidative stress exposure to the TM may help to reduce the progression of POAG. The author's laboratory has developed and patented the dual combination therapy with Topics: Administration, Ophthalmic; Administration, Oral; Animals; Biomarkers; Blindness; Carnosine; Cataract; Glaucoma, Open-Angle; Humans; Ophthalmic Solutions; Oxidative Stress; Trabecular Meshwork | 2012 |
Structural and functional properties, chaperone activity and posttranslational modifications of alpha-crystallin and its related subunits in the crystalline lens: N-acetylcarnosine, carnosine and carcinine act as alpha- crystallin/small heat shock protein
Cataract is a leading cause of blindness worldwide and is responsible for ∼40-80% of the estimated 45 million cases of blindness that occur across the globe. In addition to providing refractive properties to the lens for focusing the image, it is believed that the molecular chaperone function of α-crystallin is essential in preventing the light scattering due to aggregation of other proteins and thus in the maintenance of lens transparency and thereby prevention of cataract. By now, it is fairly acknowledged that chaperoning ability of α-crystallin is instrumental in the maintenance of crystalline lens transparency, and decreased chaperone-like activity of α-crystallin is associated with various types and stages of cataract. A better pharmacological targeting of safeguarding the α-crystallin chaperone activity may aid the development of therapeutic strategies that could evade the need for cataract surgery and revive lens transparency of the cataractous lenses. This article originally summarizes the significance of modulation and enhancing of α-crystallin chaperone activity with imidazole-containing dipeptides N-acetylcarnosine, carnosine and carcinine in consequence to prevent, delay or dissolve the human cataract. A growing evidence and discussion of recent patents are presented in this study that demonstrate the ability of N-acetylcarnosine (lubricant eye drops) or carcinine (lubricant eye drops) (universal antioxidant and deglycation agent) resistant to enzymatic hydrolysis with carnosinase to act as pharmacological chaperones, to decrease oxidative stress and ameliorate oxidative and excessive glycation stress-related eye disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for age-related cataracts, age-related macular degeneration (AMD) and ocular complications of diabetes (OCD). The therapeutic strategies are highlighted in the study for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human age-related eye disease, such as cataracts and advanced glycation tissue proteins - engineered systems. Topics: Age Factors; alpha-Crystallins; Animals; Carnosine; Cataract; Drug Design; Humans; Lens, Crystalline; Molecular Chaperones; Oxidative Stress; Patents as Topic | 2012 |
Designation of imidazole-containing dipeptides as pharmacological chaperones.
We review the dichotomous regulatory roles of natural imidazole-containing peptidomimetics (N-acetylcarnosine [NAC], carcinine, non-hydrolized carnosine) in maintaining skin homeostasis that determines whether keratinocytes survive or undergo apoptosis in response to various insults and in the development of skin diseases. General strategies addressing common ground techniques to improve absorption of usually active chaperone proteins or their dipeptide inducer (usually poorly absorbed) compounds include encapsulation into hydrophobic carriers, combination with penetration enhancers, active electrical transport or chemical modification to increase hydrophobicity. A growing evidence is presented that demonstrates the ability of NAC (lubricant eye drops) or carcinine to act as pharmacological chaperones, or being synergistically coupled in patented formulations with another imidazole-containing peptidomimetic (such as, Leucyl-histidylhydrazide), to decrease oxidative stress and ameliorate oxidative and excessive glycation stress-related eye disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for age-related cataracts, glaucoma, age-related macular degeneration (AMD), and ocular complications of diabetes (OCD). Current efforts are being directed towards exploring therapeutic approaches of pharmacological targeting and human drug delivery for chaperone molecules based on innovative patented strategies. Topics: Carnosine; Cataract; Drug Carriers; Humans; Imidazoles; Lipid Peroxidation; Macular Degeneration; Molecular Chaperones; Oxidative Stress | 2011 |
Telomere attrition in lens epithelial cells - a target for N-acetylcarnosine therapy.
The lens epithelium is especially vulnerable to oxidative stress. The erosion and shortening of telomeres in human lens epithelial cells in the lack of telomerase activity has been recognized as a primary cause of premature lens senescence phenotype that trigger human cataractogenesis. Carnosine, released ophthalmically from N-acetylcarnosine prodrug lubricant eye drops , at physiological concentration might remarkably reduce the rate of telomere shortening in the lens cells subjected to oxidative stress in the lack of efficient antioxidant lens protection. The data of visual functions (visual acuity, glare sensitivity) in older adult subjects and older subjects with cataract treated with 1% N-acetylcarnosine lubricant eye drops showed significant improvement as compared, by contrast with the control group which showed generally no improvement in visual functions, with no difference from baseline in visual acuity and glare sensitivity readings. Prevention of cellular senescence with ophthalmic prodrug N-acetylcarnosine may be a novel therapeutic target in a management of cataract, basic preventive health care and in arresting of after-cataract following extracapsular cataract extraction. Topics: Aged; Animals; Carnosine; Cataract; Disease Models, Animal; Humans; Lens, Crystalline; Telomere; Vision, Ocular; Visual Acuity | 2010 |
Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes.
Cataract formation represents a serious problem in the elderly, with approximately 25% of the population aged >65 years and about 50% aged >80 years experiencing a serious loss of vision as a result of this condition. Not only do cataracts diminish quality of life, they also impose a severe strain on global healthcare budgets. In the US, 43% of all visits to ophthalmologists by Medicare patients are associated with cataract. Surgery represents the standard treatment of this condition, and 1.35 million cataract operations are performed annually in the US, costing 3.5 billion US dollars (year of costing, 1998). Unfortunately, the costs of surgical treatment and the fact that the number of patients exceeds surgical capacities result in many patients being blinded by cataracts worldwide. This situation is particularly serious in developing countries; worldwide 17 million people are blind because of cataract formation, and the problem will grow in parallel with aging of the population. In any event, surgical removal of cataracts may not represent the optimal solution. Although generally recognised as being one of the safest operations, there is a significant complication rate associated with this surgical procedure. Opacification of the posterior lens capsule occurs in 30-50% of patients within 2 years of cataract removal and requires laser treatment, a further 0.8% experience retinal detachments, approximately 1% are rehospitalised for corneal problems, and about 0.1% develop endophthalmitis. Although the risks are small, the large number of procedures performed means that 26,000 individuals develop serious complications as a result of cataract surgery annually in the US alone. Thus, risk and cost factors drive the investigation of pharmaceutical approaches to the maintenance of lens transparency. The role of free radical-induced lipid oxidation in the development of cataracts has been identified. Initial stages of cataract are characterised by the accumulation of primary (diene conjugates, cetodienes) lipid peroxidation (LPO) products, while in later stages there is a prevalence of LPO fluorescent end-products. A reliable increase in oxiproducts of fatty acyl content of lenticular lipids was shown by a direct gas chromatography technique producing fatty acid fluorine-substituted derivatives. The lens opacity degree correlates with the level of the LPO fluorescent end-product accumulation in its tissue, accompanied by sulfhydryl group oxidation of lens protei Topics: Aging; Animals; Carnosine; Cataract; Dog Diseases; Dogs; Humans; Lipid Peroxidation; Randomized Controlled Trials as Topic | 2004 |
6 trial(s) available for n-acetylcarnosine and Cataract
Article | Year |
---|---|
N-Acetylcarnosine and histidyl-hydrazide are potent agents for multitargeted ophthalmic therapy of senile cataracts and diabetic ocular complications.
In human diabetes, the deleterious effects of chronic hyperglycemia are the result of excessive nonenzymatic modification of proteins and phospholipids by glucose and its by-products leading to the formation of irreversible oxidized, aromatic, and fluorescent ligands known as advanced glycation end products. This glycation process has been associated with deleterious health effects. The present invention provides the potent inhibitors of protein glycation and AGEs formation, which are particularly advantageous for eyedrop delivery in the prevention and treatment of diabetes- and age-related pathologies.. We proposed a deglycation system involving removal, by transglycation of sugar or aldehyde moieties from the Schiff bases by ophthalmic aldehyde scavenger L-carnosine derived from its ocular bioactivating sustained release prodrug 1% N-acetylcarnosine (NAC) lubricant eyedrops containing a mucoadhesive cellulose compound combined with corneal absorption promoters in drug delivery system. Carnosine analogs bearing the histidyl-hydrazide moiety were synthesized and patented in ophthalmic formulations with NAC bioactivating prodrug to moderate the enzymatic hydrolysis of a dipeptide by carnosinase (inhibited by a nonhydrolyzable substrate analog so that this keeps steadier levels of the drug active principle in the aqueous humor). Leucyl-histidylhydrazide peptidomimetic demonstrated the transglycation activity more pronounced than L-carnosine accounting for the ability of either molecule to reverse pre-existing, glycation-induced, cross-linking, and checking the nonenzymatic glycation cascade in the ophthalmic pathologies. The ophthalmic drug N-acetylcarnosine eye drop formulation with sustained time- release and increased absorption of L-carnosine in the aqueous humor (a prolonged effective dose) showed follow-up treatment efficacy for age-related cataracts for enrolled patients into the randomized double blind placebo controlled crossover clinical trial, and in over 50250 various cohort patients, was demonstrated to have an efficacy, safety and good tolerability for prevention and treatment of visual impairment in the older population data base.. The bioactivating antioxidant NAC and histidyl-hydrazide are potent agents with the pleiotropic effects for ophthalmic therapy of senile cataracts and diabetic ocular complications. Topics: Aged; Aged, 80 and over; Aldehydes; Aminooxyacetic Acid; Animals; Biological Availability; Carnosine; Cataract; Cornea; Cross-Over Studies; Diabetes Complications; Disease Models, Animal; Drug Administration Schedule; Drug Delivery Systems; Drug Synergism; Female; Glycosylation; Histidine; Humans; Hydrazines; Lubricants; Male; Middle Aged; Ophthalmic Solutions; Ophthalmologic Surgical Procedures; Ophthalmoscopy; Rabbits | 2009 |
State of the art clinical efficacy and safety evaluation of N-acetylcarnosine dipeptide ophthalmic prodrug. Principles for the delivery, self-bioactivation, molecular targets and interaction with a highly evolved histidyl-hydrazide structure in the treatm
The exact biological functions of the aminoacyl-histidine dipeptides in ophthalmology are still unknown but they are the subject of intensive research activities at Innovative Vision Products, Inc. (IVP). Numerous studies have demonstrated, both at the tissue and organelle levels, that naturally occuring imidazole containing peptidomimetics possess strong and specific antioxidant properties, by preventing and reducing the accumulation of oxidised products derived from the lipid peroxidation (LPO) of biological membranes. Carnosine has been shown to act as a competitive inhibitor of the non-enzymatic glycosylation of proteins.Thus, carnosine may prevent and reverse (de-link) the formation of the advanced glycation end-products (AGEs), whose accumulation in the ocular tissues has been proposed to play a direct role in the etiology and pathogenesis of cataract and diabetic ocular complications (DOC). Besides, histidine-containing dipeptides are believed to act as cytosolic buffering agents.. To compare the efficacy of L-carnosine and derivatives in inhibiting/reversing oxidative stress-induced reactions relevant for cataract pathogenesis. To assess the transglycation activity of carnosine versus representatives of a new group of synthetic carnosine histidyl-hydrazide analogs. To test the clinical efficacy of N-acetylcarnosine prodrug eye drops, developed by IVP's scientists, in decreasing the symptoms of age-related cataract.. Antioxidant activity of L-carnosine and N-acetylcarnosine was studied in liposomes, a model of lipid membranes. Iron/ascorbate was used for induction of LPO and peroxidation products were measured. Second-generation carnosine analogs were synthesized and tested vs. L-carnosine for their ability to reverse the glycation process, ultimately resulting in the formation of the AGEs. Visual acuity and glare sensitivity was measured before and after 9-month of topical administration of N-acetylcarnosine eye drops in a randomized placebo-controlled cohort of patients presenting age-related uncomplicated cataract and non-cataract subjects of the same age range.. L-carnosine operates as aldehyde and reactive oxygen species (ROS) scavenger in aqueous and lipid environments, preventing ROS-induced damage to biomolecules. L-carnosine and histidyl-hydrazide analogs present transglycation properties which could be used to decrease the occurrence of long term complications of AGE formation in DOC and age-related cataracts. In the patented ophthalmic formulations, the designed leucyl-histidylhydrazide (not hydrolizable by carnosinase substrate) is endowed with a highly evolved structure optimized for the bioactivation of a N-acetylcarnosine dipeptide prodrug, targeting therapeutics of the main DOC: cataract, diabetic retinopathy, central retinal vein occlusion, central retinal artery occlusion and neovascular glaucoma. Besides, the data support the clinical application of N-acetylcarnosine lubricant eye drops to compensate corneal acidosis. Nine-month treatment with N-acetylcarnosine resulted in improved visual acuity in subjects with cataract. Glare sensitivity was improved in subjects with cataract and in non-cataract older subjects. The results from the matched studies indicate that the N-acetylcarnosine-laden therapeutic contact lenses increasing the intraocular and systemic absorption of the active dipeptide carnosine ingredient, are an effective and well-tolerated bandage lens for anterior segment disease and for post-operative management of LASEK patients.This allows practitioners to prescribe extended wear of therapeutic contact lenses loaded with N-acetylcarnosine during medical treatment of cataracts, ocular complications of diabetes, primary open-angle glaucoma and potentially creates a healthier eye and body environment during healing. A number of clinically developed with alliance groups famous International brands of patented by IVP N-acetylcarnosine lubricant eye drops (Can-C, IVP C and D-Smile) are described with a quick reference guide for completing a vendor official registration in EC countries, U.A.E., Indonesia, Japan for human and veterinary use. In a separate development series of data Carcinine (beta-alanylhistamine) significantly protected photoreceptors against light-induced apoptosis, suggesting that this compound is sufficiently resistant to degradation with enzymatic hydrolysis and can be used in vivo representing new strategies in the anti-apoptotic ophthalmic therapy.. Cataract is a major disease both in terms of number of people involved and economic impact. The research into causative factors and mechanisms to prevent the development of cataract is essential, particularly in developing countries where cataract surgery is often inaccessible. The results of this study provide a substantial basis for further evaluation of N-acetylcarnosine eye drops patented by IVP in the treatment and prevention of visual impairment in the temporal cross-sections of an older population several years apart. In the number of promotion studies this ophthalmic drug showed experimental and clinical potential for the non-surgical treatment of age-related cataracts. Comprehensive studies that investigate clinical, economic, and humanistic outcomes for the patient and society are conducted and will be described with different types of identified pharmacoeconomic evaluations to adequately assess the comparative value of current N-acetylcarnosine eye drops therapeutics for medical care and its place in future ophthalmic practices. Patients and the public expect that safe and cost-effective cataract medical care with N-acetylcarnosine therapeutic platform should be commissioned for them. Topics: Administration, Topical; Aged; Aged, 80 and over; Antioxidants; Carnosine; Cataract; Contact Lenses; Double-Blind Method; Drug Delivery Systems; Female; Glycation End Products, Advanced; Glycosylation; Histidine; Humans; Hydrazines; Lipid Peroxidation; Liposomes; Lubricants; Male; Middle Aged; Ophthalmic Solutions; Oxidative Stress; Prodrugs; Visual Acuity | 2009 |
N-Acetylcarnosine sustained drug delivery eye drops to control the signs of ageless vision: glare sensitivity, cataract amelioration and quality of vision currently available treatment for the challenging 50,000-patient population.
Innovative Vision Products, Inc. (IVP)'s scientists developed the lubricant eye drops (Can-C) designed as 1% N-acetylcarnosine (NAC) prodrug of L-carnosine containing a mucoadhesive cellulose-based compound combined with corneal absorption promoters in a sustained drug delivery system. Only the natural L-isomeric form of NAC raw material was specifically synthesized at the cGMP facility and employed for the manufacturing of Can-C eye drops.. In the present clinical study the authors assessed vision before and after 9 month term of topical ocular administration of NAC lubricant eye drops or placebo in 75 symptomatic patients with age-related uncomplicated cataracts in one or both eyes, with acuity in one eye of 20/40 or worse (best-corrected distance), and no previous cataract surgery in either eye and no other ocular abnormality and 72 noncataract subjects ranged in age from 54 to 78 years.. Subjects in these subsample groups have reported complaints of glare and wanted to administer eye drops to get quick eye relief and quality of vision for their daily activities including driving and computer works. Following 9 months of treatment with NAC lubricant eye drops, most patients' glare scores were improved or returned to normal in disability glare tests with Halometer DG. Improvement in disability glare was accompanied with independent improvement in acuity. Furthermore, patients with the poorest pretreatment vision were as likely to regain certain better visual function after 9 months of treatment with N-acetylcarnosine lubricant eye drops as those with the worth pretreatment vision.. The authors made a reference to electronic records of the product sales to patients who have been made the repurchase of the Can-C eye drops since December 2001.. Based on this analysis of recorded adjustments to inventory, various parameters were analyzed during the continued repurchase behavior program, including testimonials from buyers. With these figures, researchers judged on the patients' compliance rate to self-administer NAC eye-drops.. The ophthalmic drug showed potential for the non-surgical treatment of age-related cataracts for participants after controlling for age, gender and daily activities and on a combined basis of repurchases behavior reports in more than 50,000 various cohort survivors, has been demonstrated to have a high efficacy and good tolerability for prevention and treatment of visual impairment determined for the older population with relative stable pattern of causes for blindness and visual impairment. The mechanisms of prevention and reversal of cataracts with NAC ophthalmic drug are considered which include prevention by the intraocular released carnosine of free-radical-induced inactivation of proprietary lens antioxidant enzymes (superoxide dismutase); prevention of carbohydrate and metal-catalyzed autooxidation of ascorbic acid-induced cross-linking glycation reactions to the lens proteins; transglycation properties of carnosine, allowing it to compete for the glycating agent, protecting proteins (lens crystallins) against modification; universal antioxidant and scavenging activity towards lipid hydroperoxides, aldehydes and oxygen radicals; activation with l-carnosine ingredient of proteasome activity in the lens; chaperone-like disaggregating to lens crystallins activity of NAC and of its bioactivated principal carnosine. Blindness incidence increased with advancing age, such as cataract and glaucoma, which are by far the commonest causes of blindness in our sample and in all age groups, glaucomatous neurodegeneration can be treated with developed NAC autoinduction prodrug eye drops equipped with corneal absorption promoters. The common blinding affections presenting in developed countries such as, senile macular degeneration, hereditary chorioretinal dystrophies, diabetic retinopathy are poorly represented in our current summary of vital-statistics and will be reported inherent in next N-acetylcarnosine ophthalmic drug studies.. The authors present evidence, about why only a certain kind of NAC is safe, and why only certain formulas designed by IVP for drug discovery are efficacious in the prevention and treatment of senile cataract for long-term use. Overall cumulated studies demonstrate that the designed by IVP new vision-saving drug NAC eye drops help the aging eye to recover by improving its clarity, glare sensitivity, color perception and overall vision. Topics: Aged; Aged, 80 and over; Carnosine; Cataract; Delayed-Action Preparations; Female; Glare; Humans; Macular Degeneration; Male; Middle Aged; Ophthalmic Solutions; Vision, Ocular | 2009 |
Rejuvenation of visual functions in older adult drivers and drivers with cataract during a short-term administration of N-acetylcarnosine lubricant eye drops.
The purpose of this study was to examine using the original halometer glare test of the type of visual impairment mediated by the increased glare sensitivity (halos) and associated with poorer visual function in both the better and worse eyes of older adult drivers and older drivers with cataract. The clinically validated (by Innovative Vision Products Inc.) formula of 1% N-acetylcarnosine (NAC) lubricant eye drops were applied topically to the eyes of older drivers to reduce glare disability and improve distance acuities for driving. This was a randomized, double-blind, placebo-controlled study. The examined subjects consisted of 65 older adults with cataract in one or both eyes, and 72 adult drivers who did not have cataract in either eye. In the control group, comparison with baseline values showed some variability of data in gradual worsening of glare sensitivity at red and green targets and minimal VA changes over 4 months. In the NAC-treated group, 4-month follow-up generally showed an improvement in VA and a significant improvement in glare sensitivity at red and green targets was documented in worse and better eyes using a critical cut point halometer score for driving. The NAC-treated eyes had statistically significant difference in VA, glare sensitivity compared with the control group ( p < 0.001) at 4-month timepoint of treatment, as supported by the overall t-test results of the ratio of the follow-up data to the baseline values. Tolerability of NAC eyedrops was good in almost all patients, with no reports of ocular or systemic adverse effects. It would be advisable for traffic safety if a Halometer glare sensitivity test was implemented for vehicles and/or was regularly added to the requirements for a driver's licence. The results of this study provide a substantial basis for further evaluation of NAC in the treatment and prevention of vision impairment in the older population of drivers for legal driving. The developed ophthalmic drug NAC formula showed potential for the non-surgical treatment of age-related cataracts. Topics: Aged; Automobile Driving; Carnosine; Cataract; Double-Blind Method; Female; Glare; Humans; Male; Middle Aged; Ophthalmic Solutions; Vision Disorders; Visual Acuity | 2004 |
Efficacy of N-acetylcarnosine in the treatment of cataracts.
To evaluate the effects of 1% N-acetylcarnosine (NAC) solution on lens clarity over 6 and 24 months in patients with cataracts.. Randomised, placebo-controlled study.. 49 subjects (76 affected eyes) with an average age of 65.3 +/- 7.0 years with a diagnosis of senile cataract with minimum to advanced opacification in various lens layers.. 26 patients (41 eyes) were allocated to topical NAC 1% eyedrops twice daily. The control group consisted of 13 patients (21 eyes) who received placebo eyedrops and 10 patients (14 eyes) who did not receive eyedrops.. All patients were evaluated at entry and followed up every 2 months for a 6-month period (trial 1), or at 6-month intervals for a 2-year period (trial 2), for best-corrected visual acuity and glare testing. In addition, cataract was measured using stereocinematographic slit-images and retro-illumination examination of the lens. Digital analysis of lens images displayed light scattering and absorbing centres in two- and three-dimensional scales.. The overall intra-reader reproducibility of cataract measurements (image analysis) was 0.830, and glare testing 0.998. After 6 months, 90% of NAC-treated eyes showed improvement in best corrected visual acuity (7 to 100%) and 88.9% showed a 27 to 100% improvement in glare sensitivity. Topographic studies indicated fewer areas of posterior subcapsular lens opacity and 41.5% of treated eyes had improvement in image analysis characteristics. The overall ratios of image analysis characteristics at 6 months compared with baseline measures were 1.04 and 0.86 for the control and NAC-treated group, respectively (p < 0.001). The apparent benefits of treatment were sustained after 24 months' treatment. No treated eyes demonstrated worsening of vision. The overall visual outcome in the control group showed significant worsening after 24 months in comparison with both baseline and the 6-month follow-up examination. The overall clinical results observed in the NAC-treated group by the 24-month period of examination differed significantly (p < 0.001) from the control group in the eyes with cortical, posterior subcapsular, nuclear or combined lens opacities. Tolerability of NAC eyedrops was good in almost all patients, with no reports of ocular or systemic adverse effects.. Topical NAC shows potential for the treatment and prevention of cataracts. Topics: Aged; Aged, 80 and over; Carnosine; Cataract; Female; Humans; Male; Middle Aged | 2002 |
N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts.
A study was designed to document and quantify the changes in lens clarity over 6 and 24 months in 2 groups of 49 volunteers (76 eyes) with an average age of 65.3 +/- 7.0 enrolled at the time of diagnosis of senile cataracts of minimal to advanced opacification. The patients received N-acetylcarnosine, 1% sol (NAC) (26 patients, 41 eyes = Group II), placebo composition (13 patients, 21 eyes) topically (two drops, twice daily) to the conjunctival sac, or were untreated (10 patients, 14 eyes); the placebo and untreated groups were combined into the control (reference) Group I. Patients were evaluated upon entry, at 2-month (Trial 1) and 6-month (Trial 2)-intervals for best corrected visual acuity (b/c VA), by ophthalmoscopy and the original techniques of glare test (for Trial 1), stereocinematographic slit-image and retro-illumination photography with subsequent scanning of the lens. The computerized interactive digital analysis of obtained images displayed the light scattering/absorbing centers of the lens into 2-D and 3-D scales. The intra-reader reproducibility of measuring techniques for cataractous changes was good, with the overall average of correlation coefficients for the image analytical data 0.830 and the glare test readings 0.998. Compared with the baseline examination, over 6 months 41.5% of the eyes treated with NAC presented a significant improvement of the gross transmissivity degree of lenses computed from the images, 90.0% of the eyes showed a gradual improvement in b/c VA to 7-100% and 88.9% of the eyes ranged a 27-100% improvement in glare sensitivity. Topographic studies demonstrated less density and corresponding areas of opacification in posterior subcapsular and cortical morphological regions of the lens consistent with VA up to 0.3. The total study period over 24 months revealed that the beneficial effect of NAC is sustainable. No cases resulted in a worsening of VA and image analytical readings of lenses in the NAC-treated group of patients. In most of the patients drug tolerance was good. Group I of patients demonstrated the variability in the densitometric readings of the lens cloudings, negative advance in glare sensitivity over 6 months and gradual deterioration of VA and gross transmissivity of lenses over 24 months compared with the baseline and 6-month follow-up examinations. Statistical analysis revealed the significant differences over 6 and 24 months in cumulative positive changes of overall characteristics of cataracts in Topics: Age Factors; Aged; Carnosine; Cataract; Eye; Female; Humans; Lens, Crystalline; Male; Middle Aged; Observer Variation; Oxidative Stress; Sex Factors; Time Factors | 2001 |
10 other study(ies) available for n-acetylcarnosine and Cataract
Article | Year |
---|---|
An approach to revolutionize cataract treatment by enhancing drug probing through intraocular cell line.
The purpose of this study is to prepare and characterize solid lipid nanoparticles (SLN) of N-Acetyl Carnosine (NAC) to treat cataract since surgery necessitates equipments and professional help. Cataract is believed to be formed by the biochemical approach where the crystalline eye proteins lose solubility and forms high molecular weight masses. Added advantages of SLN of NAC (henceforth referred as SLN-NAC) in the study are reduced size, sustained release and better corneal penetration of drug. The method of preparation of SLN-NAC by Mill's method is unique in itself. The size of the SLN-NAC was 75 ± 10 nm in the range of ideal for penetration. The in-vitro release study and the SLN-NAC formulations prepared with Mill's method demonstrated sustained release up to 24 h following an initial burst after 1 h. The zeta potential of the prepared formulation was -22.1 ± 1 mV. Corneal permeation studies using goat corneas indicate that SLN-NAC penetration rate was higher than those from NAC eye drops. Corneal hydration studies indicated that the formulation caused no harm to the corneal cells. Therefore it may be concluded that SLN-NAC may revolutionize cataract treatment and reversal by improving drug permeation, reducing toxicity and no damage to corneal tissue. Topics: Administration, Ophthalmic; Animals; Carnosine; Cataract; Cell Culture Techniques; Cell Line; Cornea; Delayed-Action Preparations; Drug Delivery Systems; Endothelial Cells; Goats; Humans; Nanoparticles; Ocular Absorption; Particle Size | 2018 |
Biosynthesis, characterization and cytotoxicity of gold nanoparticles and their loading with N-acetylcarnosine for cataract treatment.
The present work showed the biofabrication and characterization of gold nanoparticles (Au NPs) using Coccinia grandis bark extract. The fabricated NPs were well characterized by using different microscopic an spectroscopic techniques such as transmission electron microscopy (TEM), Ultra violet - visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Fourier transform spectroscopy (FTIR). TEM results showed that the prepared AuNPs are spherical in shape with uniformity in size. The calculated average size of the AuNPs is 20 nm. The NAC drug molecule that is used for cataract treatment was successfully encapsulated into Au NPs to increase its bioavailability. Also, the in-vitro cytotoxicity of NAC and NAC - Au NPs were studied against fibroblast cells, and the results showed that encapsulation of NAC into Au NPs did not showed cytotoxicity after encapsulation. NAC molecules do not exhibit toxicity at lower concentrations, While, there is a reduction in the number of viable cells at higher concentration of NAC. Also, the encapsulation of the drug onto Au NPs is considerably increased biocompatibility and bioavailability. In future, this research results may be helpful for the development of drugs for treatment of cataract with high stability and reactivity. Topics: Animals; Biocompatible Materials; Carnosine; Cataract; Cell Line; Cell Survival; Cucurbitaceae; Gold; Green Chemistry Technology; Metal Nanoparticles; Mice; Particle Size; Plant Bark; Plant Extracts; Spectroscopy, Fourier Transform Infrared; X-Ray Diffraction | 2018 |
[Deceleration of cataract development in rats under the action of N-acetylcarnosine and D-pantethine mixture].
The effect of a mixture of N-acetylcarnosine and D-pantethine (1 : 1, m/m) on UV-A induced cataract in rats was studied. It is shown that instillation of a 5% mixture into the eyes or intraperitoneal injections (25 or 150 mg/kg) inhibit the formation of cataracts, starting from 82nd day of the experiment (p < 0.03), after which the protective effect of the mixture significantly increases (p = 0.0003). UV-A irradiation significantly (p < 0.01) increased the content of water-insoluble proteins in the lens. The use of the mixture of N-Acetylcarnosine and D-pantethine prevented (p < 0.001) an increase in the content of water-insoluble proteins caused by UV-A irradiation. Gel permeation chromatography data showed that, in the control group, water insoluble proteins consist of 3 fractions (40 kDa, 100 - 200 kDa, and1000 kDa). UV-A irradiation reduced the amount of protein in fraction 1 and increases the amount of protein in the fractions 2 and 3. The use of the mixture of N-acetylcarnosine and D-pantethine reduced the effects of UV-A light. The authors attribute the effect of the N-acetylcarnosine and D-pantethine mixture to their chaperone-like properties. Topics: Animals; Carnosine; Cataract; Chromatography, Gel; Drug Combinations; Eye Proteins; Injections, Intraperitoneal; Lens, Crystalline; Male; Ophthalmic Solutions; Pantetheine; Protective Agents; Protein Aggregates; Radiation Injuries, Experimental; Rats; Rats, Wistar; Solubility; Ultraviolet Rays | 2014 |
Rapid formation and resolution of cataracts following orthopedic surgery for a patient with Charcot-Marie-Tooth disease.
Topics: Carnosine; Cataract; Charcot-Marie-Tooth Disease; Foot Deformities, Acquired; Humans; Male; Middle Aged; Orthopedic Procedures; Remission, Spontaneous; Self Medication | 2012 |
Natural dipeptides as mini-chaperones: molecular mechanism of inhibition of lens βL-crystallin aggregation.
The effect of histidine-containing dipeptides-carnosine and N-acetylcarnosine-on preventing and treating of cataracts of various etiologic origins has been demonstrated in many studies in vivo, while the precise molecular mechanism of their action is actually obscure. Cataract has been recently attributed to conformational diseases due to the association of lens structure protein aggregation with cataract pathogenesis. In our study, effect of histidine-containing dipeptides-carnosine, N-acetylcarnosine, and anserine-on the UV induced βL-crystallin aggregation was studied in vitro. It was first demonstrated that N-acetylcarnosine and anserine (10-40 mM) considerably suppressed UV induced aggregation of βL-crystallin, while carnosine exerted no effect. Positive correlation between anti-aggregating activity of the compounds used and their hydrophobicity was obtained. It was revealed that N-acetylcarnosine and anserine inhibited the initial stages of the protein photochemical damage. A decrease in the size of protein aggregates was detected in the presence of N-acetylcarnosine and anserine. UV irradiation of βL-crystallin resulted in a significant increase in the number of protein carbonyl groups, and the dipeptides studied did not affect this process. We suppose that N-acetylcarnosine and anserine inhibit βL-crystallin aggregation via formation of a protein-dipeptide complex that prevents macromolecular conformational changes and ensuing protein aggregation. Topics: Animals; Anserine; beta-Crystallins; Carnosine; Cataract; Cattle; Dipeptides; Hydrophobic and Hydrophilic Interactions; Kinetics; Lens, Crystalline; Molecular Chaperones; Protein Carbonylation; Protein Conformation; Ultraviolet Rays | 2012 |
Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract
The aging eye appears to be at considerable risk from oxidative stress. Lipid peroxidation (LPO) is one of the mechanisms of cataractogenesis, initiated by enhanced promotion of oxygen free radicals in the eye fluids and tissues and impaired enzymatic and non-enzymatic antioxidant defenses of the crystalline lens. The present study proposes that mitochondria are one of the major sources of reactive oxygen species (ROS) in mammalian and human lens epithelial cells and that therapies that protect mitochondria in lens epithelial cells from damage and reduce damaging ROS generation may potentially ameliorate the effects of free radical-induced oxidation that occur in aging ocular tissues and in human cataract diseases. It has been found that rather than complete removal of oxidants by the high levels of protective enzyme activities such as superoxide dismutase (SOD), catalase, lipid peroxidases in transparent lenses, the lens conversely, possess a balance between peroxidants and antioxidants in a way that normal lens tends to generate oxidants diffusing from lenticular tissues, shifting the redox status of the lens to become more oxidizing during both morphogenesis and aging. Release of the oxidants (O(2)(-)·, H(2)O(2) , OH·, and lipid hydroperoxides) by the intact lenses in the absence of respiratory inhibitors indicates that these metabolites are normal physiological products inversely related to the lens life-span potential (maturity of cataract) generated through the metal-ion catalyzed redox-coupled pro-oxidant activation of the lens reductants (ascorbic acid, glutathione). The membrane-bound phospholipid (PL) hydroperoxides escape detoxification by the lens enzymatic reduction. The lens cells containing these species would be vulnerable to peroxidative attack which trigger the PL hydroperoxide-dependent chain propagation of LPO and other damages in membrane (lipid and protein alterations). The increased concentrations of primary LPO products (diene conjugates, lipid hydroperoxides) and end fluorescent LPO products were detected in the lipid moiety of the aqueous humor samples obtained from patients with cataract as compared to normal donors. Since LPO is clinically important in many of the pathological effects and aging, new therapeutic modalities, such as patented N-acetylcarnosine prodrug lubricant eye drops, should treat the incessant infliction of damage to the lens cells and biomolecules by reactive lipid peroxides and oxygen species and "refashion Topics: Aged; Aging; Animals; Antioxidants; Aqueous Humor; Carnosine; Cataract; Female; Humans; Hydrogen Peroxide; Lens, Crystalline; Lipid Peroxidation; Lipid Peroxides; Male; Mice; Mice, Inbred C57BL; Middle Aged; Mitochondria; Ophthalmic Solutions; Oxidation-Reduction; Oxidative Stress; Phospholipids; Prodrugs; Rabbits; Reactive Oxygen Species | 2011 |
5-S-GAD, a novel radical scavenging compound, prevents lens opacity development.
The ability of N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD)-a novel catechol derivative isolated from an insect as an antibacterial substance-to scavenge free radicals and prevent cataract progression was examined. 5-S-GAD scavenged 1,1-diphenylpicrylhydrazyl (DPPH) and superoxide anions (O(2)(*)(-)), and inhibited lipid peroxidation. It also significantly inhibited the onset of glucocorticoid-induced lens opacification in chick embryos. These effects of 5-S-GAD were stronger than those of N-acetylcarnosine and TEMPOL, which are reported to be effective radical scavengers in the prevention of cataract progression. 5-S-GAD clearly delayed the maturation of cataracts induced by diamide in cultured lenses of rats. Daily instillation of 5-S-GAD retarded the development of lens opacity in galactose-fed rats. Biochemical analysis of the lenses revealed that 20-kDa proteins, presumably consisting of alpha-crystallin, were the most susceptible to oxidative stress, which leads to the carbonylation of the side chains of these proteins. alpha-Crystallin carbonylation induced by diamide or galactose was notably inhibited by 5-S-GAD in a dose-dependent manner. Our results show that 5-S-GAD prevents acute lens opacification in these short-term experimental models, possibly in part by virtue of its antioxidative property, and 5-S-GAD is expected to have long-term pharmaceutical effects. Topics: alpha-Crystallins; Animals; Biphenyl Compounds; Carnosine; Cataract; Cells, Cultured; Chick Embryo; Cyclic N-Oxides; Diamide; Dihydroxyphenylalanine; Disease Progression; Dose-Response Relationship, Drug; Free Radical Scavengers; Galactose; Glucocorticoids; Glutathione; Insecta; Lens, Crystalline; Lipid Peroxidation; Male; Oxidative Stress; Picrates; Protein Carbonylation; Rats; Rats, Sprague-Dawley; Spin Labels; Superoxides | 2009 |
Potentiation of intraocular absorption and drug metabolism of N-acetylcarnosine lubricant eye drops: drug interaction with sight threatening lipid peroxides in the treatment for age-related eye diseases.
Cataract is the dominant cause of blindness worldwide. Studies of the morphological structure and biophysical changes of the lens in human senile cataracts have demonstrated the disappearance of normal fiber structure in the opaque region of the lens and the disintegration of the lens fiber plasma membrane in the lens tissue. Morphological and biochemical techniques have revealed the regions in human cataractous lenses in which the plasma membrane derangement occurs as the primary light scattering centers which cause the observed lens opacity. Human cataract formation is mostly considered to be a multifactorial disease; however, oxidative stress might be one of the leading causes for both nuclear and cortical cataract. Phospholipid molecules modified with oxygen, accumulating in the lipid bilayer, change its geometry and impair lipid-lipid and protein-lipid interactions in lenticular fiber membranes. Electron microscopy data of human lenses at various stages of age-related cataract document that these disruptions were globules, vacuoles, multilamellar membranes, and clusters of highly undulating membranes. The opaque shades of cortical cataracts represent cohorts of locally affected fibres segregated from unaffected neighbouring fibres by plasma membranes. Other potential scattering centers found throughout the mature cataract nucleus included variations in staining density between adjacent cells, enlarged extracellular spaces between undulating membrane pairs, and protein-like deposits in the extracellular space. These affected parts had membranes with a fine globular aspect and in cross-section proved to be filled with medium to large globular elements. Lipid peroxidation (LPO) is a pathogenetic and causative factor of cataract. Increased concentrations of primary molecular LPO products (diene conjugates, lipid hydroperoxides, fatty acid oxy-derivatives) and end fluorescent LPO products were detected in the lipid moieties of the aqueous humor samples and human lenses obtained from patients with senile and complicated cataracts as compared to normal donors. Utilizing the pharmacokinetic studies and the specific purity N-acetylcarnosine (NAC) ingredient as a source of pharmacological principal L-carnosine, we have created an ophthalmic time-release prodrug form combined with a muco-adhesive lubricant compound carboxymethylcellulose and other essential corneal absorption promoter excipients tailoring the increased intraocular absorption of L-carnosine in t Topics: Adolescent; Adult; Aged; Aged, 80 and over; Animals; Antioxidants; Aqueous Humor; Carnosine; Cataract; Delayed-Action Preparations; Drug Synergism; Eye; Female; Humans; Lens, Crystalline; Lipid Peroxidation; Lipid Peroxides; Liposomes; Male; Microscopy, Electron; Middle Aged; Ophthalmic Solutions; Rabbits; Tissue Culture Techniques; Young Adult | 2009 |
Ocular drug metabolism of the bioactivating antioxidant N-acetylcarnosine for vision in ophthalmic prodrug and codrug design and delivery.
The basic idea in this study relates to the interesting research problem to employ with the knowledgeable pharmacy staff N-acetylcarnosine (NAC) in the developed suitable compounded prodrug ophthalmic preparations, which are currently used for the treatment of cataract and have antioxidant effect, in order to provide the molecular support to one of the most popular beliefs of the growing market for the treatment of senile cataract in patients and animals with efficacious NAC drug formulations worldwide patented by the author. This work presents the progress in ocular NAC prodrug and codrug design and delivery in light of revealed ocular metabolic activities. There is a considerable interest in the ophthalmic codrug design including NAC prodrug based on the strategies to improve ophthalmic drug delivery of the active peptide principal L-carnosine through the sustained intraocular metabolic activation of a dipeptide while making it resistant to enzymatic hydrolysis. Novel approaches to ocular NAC drug delivery, developed by Innovative Vision Products, Inc. (IVP), aim at enhancing the drug bioavailability by ensuring a prolonged retention of the medication in the eye, and/or by facilitating transcorneal penetration. IVP team studied the effects of lubricant eye drops designed as 1% NAC prodrug of L-carnosine containing a mucoadhesive cellulose-based and corneal absorption promoters in a drug delivery system. The predicted responses of the corneal and conjunctival penetrations to the synergistic promoters are useful in controlling the extent and pathway of the ocular and systemic absorptions of instilled NAC prodrug in designed ophthalmic formulations thereof. Utility of peptidase enzyme inhibitors in the codrug formulation to modulate the transport and metabolism of NAC prodrug appears to be a promising strategy for enhancing dipeptide drug transport across the cornea. The developed and officially CE mark registered by IVP NAC prodrug and codrug lubricating eye drop systems (including principal regulatory registered eye drops design and lubricating eye drops marketed under numerous brand labels), increase the intraocular uptake of the active principle L-carnosine from its ophthalmic carrier NAC in the aqueous humor and the permeability of a drug into the eye, and so enhance the ocular bioavailability, bioactivating universal antioxidant, and anti-cataract efficacy (in human and in canine eyes) of the developed NAC eye drops. Topics: Animals; Antioxidants; Carnosine; Cataract; Chromatography, High Pressure Liquid; Cornea; Drug Design; Eye; Humans; Lens, Crystalline; Lipid Peroxidation; Liposomes; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Prodrugs; Rabbits | 2008 |
Analysis of lipid peroxidation and electron microscopic survey of maturation stages during human cataractogenesis: pharmacokinetic assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract prevention.
Morphological and biophysical techniques described in this study have shown that membrane derangement occurs in human cataractous lenses. The data suggest that these disruptions were globules, vacuoles, multilamellar membranes and clusters of highly undulating membranes. Deleterious structural damage of the lens fibre cell plasma membranes serve as the primary light-scattering centres that cause the observed lens opacity. Nuclear cataract, a major cause of loss of lens transparency in the aging human, has been thought to be associated with oxidative damage, particularly at the site of the nuclear plasma membrane. Phospholipid molecules modified by oxygen accumulate in the lipid bilayer, change its geometry and impair lipid-lipid and protein-lipid interactions in lenticular fibre membranes. Lipid peroxidation (LPO) is a causative and pathogenic factor in cataract. Increased concentrations of primary molecular LPO products (diene conjugates, lipid hydroperoxides, oxy-derivatives of phospholipid fatty acids) and end-fluorescent LPO products have been detected in the lipid moieties of aqueous humour samples and human lenses obtained from patients with senile and complicated cataracts as compared with normal donors. In the present study, a rapid and simple high-performance liquid chromatographic (HPLC) assay for determination of imidazole-containing dipeptides in the aqueous humour of the eye was developed. The method was applied to determine the pharmacokinetic parameters and the time-course of N-acetylcarnosine and L-carnosine-related product in the eye, following a single dosage of topical ocular administration of peptide. Utilising data from pharmacokinetic studies and the specific purity of the N-acetylcarnosine (NAC) ingredient as a source of the pharmacological principle L-carnosine, we have created an ophthalmic time-release prodrug form including the US FDA-approved carboxymethylcellulose lubricant and other essential ingredients (Can-C, private label Nu-Eyes). This formulation increases the intraocular absorption of L-carnosine in the aqueous humour and optimises its specific antioxidant activity in vivo while reducing the toxic effects of lipid peroxides on the crystalline lens. L-carnosine that enters the aqueous humour can accumulate in the lens tissue for a reasonable period of time. The presence of L-carnosine in transparent crystalline lenses during normal aging was detected and its concentration in this case was about 25 microM. At different s Topics: Adolescent; Adult; Aged; Aged, 80 and over; Animals; Aqueous Humor; Biological Availability; Carnosine; Cataract; Chromatography, High Pressure Liquid; Female; Humans; Lens, Crystalline; Lipid Peroxidation; Liposomes; Lubrication; Male; Microscopy, Electron; Middle Aged; Ophthalmic Solutions; Prodrugs; Rabbits | 2005 |