n-(n-(3-5-difluorophenacetyl)alanyl)phenylglycine-tert-butyl-ester has been researched along with Ischemia* in 3 studies
3 other study(ies) available for n-(n-(3-5-difluorophenacetyl)alanyl)phenylglycine-tert-butyl-ester and Ischemia
Article | Year |
---|---|
Inhibition of the Notch Pathway Promotes Flap Survival by Inducing Functional Neoangiogenesis.
The Notch pathway seems to function as an antiangiogenic factor, negatively regulating the sprouting effect of vascular endothelial growth factor (VEGF). This function is well defined in embryonic and tumor vasculature. However, little is known about its function in ischemia-induced angiogenesis. In the first part of this study, we investigated the role of Notch in reparative angiogenesis after ischemia. In the second part, we hypothesized that anti-Notch therapy will result in increased angiogenic sprouting. We analyzed the effect of Notch inhibition in the induction of angiogenic sprouting.. In the first part, we investigated the effect of ischemia on the Notch ligand delta-like ligand 4 (DLL4). Twenty rats were divided equally into 2 groups. In the surgery group, dorsal skin flap was used as model of ischemia. In the control group, no surgical procedure was performed. DLL4 and VEGF gene expressions were assessed. Immunohistochemical staining was used for detection of DLL4 in tissue materials. Plasma levels of VEGF and DLL4 were measured. In the second part, we investigated the effect of Notch inhibition using a gamma-secretase inhibitor (GSI) on inducing neoangiogenesis. Twenty rats were assigned to 2 equal groups. In all animals, dorsal skin flap was raised and sutured back into its bed. Animals in the GSI-treated group received GSI intravenously after surgery for 3 days. Saline was administered in the control group. Necrotic area measurements, microangiography, and histologic evaluations were performed to compare groups.. In the first part, VEGF and DLL expressions increased in ischemic tissues (P < 0.01). Immunohistochemical analysis revealed that DLL4 expression was upregulated in capillary endothelial cells after ischemia. Plasma levels for VEGF and DLL4 were higher in the animals that underwent surgery (P < 0.01). In the second part, GSI treatment resulted in higher flap survival rates (P < 0.05). Microscopic analysis exhibited increase in the number of microvascular structures after GSI treatment (P < 0.05). Microangiographic evaluation showed that neovascularization increased in the GSI-applied flaps.. We present an evidence for the importance of the Notch pathway in the regulation of ischemia-induced angiogenesis. Notch inhibition promotes flap survival by creating a neovasculature that has an increase in vascular density. Topics: Animals; Biomarkers; Dipeptides; Enzyme Inhibitors; Intracellular Signaling Peptides and Proteins; Ischemia; Male; Membrane Proteins; Neovascularization, Physiologic; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Notch; Surgical Flaps; Vascular Endothelial Growth Factor A | 2015 |
Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice.
Diabetes can diminish the responsiveness to angiogenic factors (e.g., VEGF) important for wound healing and the treatment of ischemic diseases, and this study investigated the hypothesis that this effect can be reversed by altering Notch signaling. Aortic endothelial cells (ECs) isolated from diabetic mice demonstrated reduced sprouting capability in vitro, but adding a Notch inhibitor (DAPT) led to cell-density and VEGF-dose dependent enhancement of proliferation, migration and sprouting, in both 2-D and 3-D cultures, as compared to VEGF alone. The in vivo effects of VEGF and DAPT were tested in the ischemic hind limbs of diabetic mice. Combining VEGF and DAPT delivery resulted in increased blood vessel density (∼150%) and improved tissue perfusion (∼160%), as compared to VEGF alone. To examine if DAPT would interfere with vessel maturation, DAPT was also delivered with a combination of VEGF and platelet derived growth factor (PDGF). DAPT and PDGF did not interfere with the effects of the other, and highly functional and mature networks of vessels could be formed with appropriate delivery. In summary, modulating Notch signaling enhances neovascularization and perfusion recovery in diabetic mice suffering from ischemia, suggesting this approach could have utility for human diabetics. Topics: Animals; Aorta; Cell Movement; Cell Proliferation; Diabetes Mellitus, Experimental; Dipeptides; Endothelial Cells; Hindlimb; Ischemia; Mice; Neovascularization, Physiologic; Receptors, Notch; Reperfusion; Signal Transduction; Vascular Endothelial Growth Factor A | 2010 |
Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling.
Promoting angiogenesis via delivery of vascular endothelial growth factor (VEGF) and other angiogenic factors is both a potential therapy for cardiovascular diseases and a critical aspect for tissue regeneration. The recent demonstration that VEGF signaling is modulated by the Notch signaling pathway, however, suggests that inhibiting Notch signaling may enhance regional neovascularization, by altering the responsiveness of local endothelial cells to angiogenic stimuli. We tested this possibility with in vitro assays using human endothelial cells, as well as in a rodent hindlimb ischemia model. Treatment of cultured human endothelial cells with DAPT, a gamma secretase inhibitor, increased cell migration and sprout formation in response to VEGF stimulation with a biphasic dependence on DAPT concentration. Further, delivery of an appropriate combination of DAPT and VEGF from an injectable alginate hydrogel system into ischemic hindlimbs led to a faster recovery of blood flow than VEGF or DAPT alone; perfusion levels reached 80% of the normal level by week 4 with combined DAPT and VEGF delivery. Direct intramuscular or intraperitoneal injection of DAPT did not result in the same level of improvement, suggesting that appropriate presentation of DAPT (gel delivery) is important for its activity. DAPT delivery from the hydrogels also did not lead to any adverse side effects, in contrast to systemic introduction of DAPT. Altogether, these results suggest a new approach to promote angiogenesis by controlling Notch signaling, and may provide new options to treat patients with diseases that diminish angiogenic responsiveness. Topics: Alginates; Animals; Cells, Cultured; Dipeptides; Endothelial Cells; Endothelium, Vascular; Hindlimb; Humans; Hydrogels; Ischemia; Mice; Neovascularization, Physiologic; Receptors, Notch; Signal Transduction; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Vinculin | 2009 |