n-(4-methylthiazol-2-yl)-2-(6-phenylpyridazin-3-ylthio)acetamide and Disease-Models--Animal

n-(4-methylthiazol-2-yl)-2-(6-phenylpyridazin-3-ylthio)acetamide has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for n-(4-methylthiazol-2-yl)-2-(6-phenylpyridazin-3-ylthio)acetamide and Disease-Models--Animal

ArticleYear
Engagement of the GABA to KCC2 signaling pathway contributes to the analgesic effects of A3AR agonists in neuropathic pain.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015, 04-15, Volume: 35, Issue:15

    More than 1.5 billion people worldwide suffer from chronic pain, yet current treatment strategies often lack efficacy or have deleterious side effects in patients. Adenosine is an inhibitory neuromodulator that was previously thought to mediate antinociception through the A1 and A2A receptor subtypes. We have since demonstrated that A3AR agonists have potent analgesic actions in preclinical rodent models of neuropathic pain and that A3AR analgesia is independent of adenosine A1 or A2A unwanted effects. Herein, we explored the contribution of the GABA inhibitory system to A3AR-mediated analgesia using well-characterized mouse and rat models of chronic constriction injury (CCI)-induced neuropathic pain. The deregulation of GABA signaling in pathophysiological pain states is well established: GABA signaling can be hampered by a reduction in extracellular GABA synthesis by GAD65 and enhanced extracellular GABA reuptake via the GABA transporter, GAT-1. In neuropathic pain, GABAAR-mediated signaling can be further disrupted by the loss of the KCC2 chloride anion gradient. Here, we demonstrate that A3AR agonists (IB-MECA and MRS5698) reverse neuropathic pain via a spinal mechanism of action that modulates GABA activity. Spinal administration of the GABAA antagonist, bicuculline, disrupted A3AR-mediated analgesia. Furthermore, A3AR-mediated analgesia was associated with reductions in CCI-related GAD65 and GAT-1 serine dephosphorylation as well as an enhancement of KCC2 serine phosphorylation and activity. Our results suggest that A3AR-mediated reversal of neuropathic pain increases modulation of GABA inhibitory neurotransmission both directly and indirectly through protection of KCC2 function, underscoring the unique utility of A3AR agonists in chronic pain.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Analgesics; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; gamma-Aminobutyric Acid; HEK293 Cells; Humans; Hyperalgesia; K Cl- Cotransporters; Male; Mice; Pain Threshold; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Sciatica; Signal Transduction; Spinal Nerve Roots; Symporters; Thiazoles; Thioglycolates

2015
KCC2 function modulates in vitro ictogenesis.
    Neurobiology of disease, 2015, Volume: 79

    GABAA receptor-mediated inhibition is active and may contribute to epileptiform synchronization. The efficacy of inhibition relies on low levels of intracellular Cl(-), which are controlled by KCC2 activity. This evidence has led us to analyze with field potential recordings the effects induced by the KCC2 blockers VU0240551 (10 μM) or bumetanide (50 μM) and by the KCC2 enhancer CLP257 (100 μM) on the epileptiform discharges generated by piriform and entorhinal cortices (PC and EC, respectively) in an in vitro brain slice preparation. Ictal- and interictal-like discharges along with high-frequency oscillations (HFOs, ripples: 80-200 Hz, fast ripples: 250-500 Hz) were recorded from these two regions during application of 4-aminopyridine (4AP, 50 μM). Blocking KCC2 activity with either VU024055 or high doses of bumetanide abolished ictal discharge in both PC and EC; in addition, these experimental procedures decreased the interval of occurrence and duration of interictal discharges. In contrast, enhancing KCC2 activity with CLP257 increased ictal discharge duration in both regions. Finally, blocking KCC2 activity decreased the duration and amplitude of pharmacologically isolated synchronous GABAergic events whereas enhancing KCC2 activity led to an increase in their duration. Our data demonstrate that in vitro ictogenesis is abolished or facilitated by inhibiting or enhancing KCC2 activity, respectively. We propose that these effects may result from the reduction of GABAA receptor-dependent increases in extracellular K(+) that are known to rest on KCC2 function.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bumetanide; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Antagonists; K Cl- Cotransporters; Male; Rats, Sprague-Dawley; Sodium Potassium Chloride Symporter Inhibitors; Symporters; Thiazoles; Thiazolidines; Thioglycolates; Tissue Culture Techniques

2015