n-(4-methoxybenzyl)-n--(5-nitro-1-3-thiazol-2-yl)urea has been researched along with Inflammation* in 1 studies
1 other study(ies) available for n-(4-methoxybenzyl)-n--(5-nitro-1-3-thiazol-2-yl)urea and Inflammation
Article | Year |
---|---|
The antinociceptive effects of AR-A014418, a selective inhibitor of glycogen synthase kinase-3 beta, in mice.
We investigated the antinociceptive effects of AR-A014418, a selective inhibitor of glycogen synthase kinase-3β (GSK-3β) in mice. A 30-minute pretreatment with AR-A014418 (.1 and 1 mg/kg, intraperitoneal [ip]) inhibited nociception induced by an ip injection of acetic acid. AR-A014418 pretreatment (.1 and .3 mg/kg, ip) also decreased the late (inflammatory) phase of formalin-induced licking, without affecting responses of the first (neurogenic) phase. In a different set of experiments, AR-A014418 (.1-10 μg/site) coinjected intraplantarly (ipl) with formalin inhibited the late phase of formalin-induced nociception. Furthermore, AR-A014418 administration (1 and 10 ng/site, intrathecal [it]) inhibited both phases of formalin-induced licking. In addition, AR-A014418 coinjection (10 ng/site, it) inhibited nociception induced by glutamate, N-methyl-D-aspartate (NMDA), (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β) by 47 ± 12%, 48 ± 11%, 31 ± 8%, 46 ± 13%, and 44 ± 11%, respectively. In addition, a 30-minute pretreatment with NP031115 (3 and 10 mg/kg, ip), a different GSK-3 β inhibitor, also attenuated the late phase of formalin-induced nociception. Collectively, these results provide convincing evidence that AR-A014418, given by local, systemic, and central routes, produces antinociception in several mouse models of nociception. The AR-A014418-dependent antinociceptive effects were induced by modulation of the glutamatergic system through metabotropic and ionotropic (NMDA) receptors and the inhibition of the cytokine (TNF-α and IL-1β) signaling.. These results suggest that GSK-3β may be a novel pharmacological target for the treatment of pain. Topics: Abdominal Pain; Aggression; Analgesics; Analysis of Variance; Animals; Anti-Inflammatory Agents, Non-Steroidal; Azides; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Formaldehyde; Glutamic Acid; Glycogen Synthase Kinase 3; Inflammation; Male; Mice; N-Methylaspartate; Pain Measurement; Sugar Acids; Thiazoles; Urea; Xylose | 2011 |