n-(4-(n-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide and Inflammation

n-(4-(n-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide has been researched along with Inflammation* in 4 studies

Other Studies

4 other study(ies) available for n-(4-(n-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide and Inflammation

ArticleYear
Necrosulfonamide exerts neuroprotective effect by inhibiting necroptosis, neuroinflammation, and α-synuclein oligomerization in a subacute MPTP mouse model of Parkinson's disease.
    Scientific reports, 2023, 05-31, Volume: 13, Issue:1

    Parkinson's disease (PD) is an incurable movement disorder characterized by dopaminergic cell loss, neuroinflammation, and α-synuclein pathology. Herein, we investigated the therapeutic effects of necrosulfonamide (NSA), a specific inhibitor of mixed lineage kinase domain-like protein (MLKL), in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MLKL is an executor of necroptosis, a programmed cell death pathway that causes inflammation. Repeated administration of NSA resulted in the recovery of impaired motor performance and dopaminergic degeneration. Furthermore, NSA inhibited the phosphorylation, ubiquitylation, and oligomerization of MLKL, all of which are associated with MLKL cell death-inducing activity in dopaminergic cells in the substantia nigra (SN). NSA also inhibited microglial activation and reactive astrogliosis as well as the MPTP-induced expression of proinflammatory molecules such as tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cystatin F. Furthermore, NSA inhibited α-synuclein oligomerization and phosphorylation in the SN of MPTP-treated mice by inhibiting the activity of glycogen synthase kinase 3β and matrix metalloproteinase-3. In conclusion, NSA has anti-necroptotic, anti-inflammatory, and anti-synucleinopathic effects on PD pathology. Therefore, NSA is a potential therapeutic candidate for PD.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Synuclein; Animals; Disease Models, Animal; Dopaminergic Neurons; Inflammation; Mice; Mice, Inbred C57BL; Necroptosis; Neuroinflammatory Diseases; Neuroprotective Agents; Parkinson Disease

2023
Allergen-induced CD11c + dendritic cell pyroptosis aggravates allergic rhinitis.
    Cell communication and signaling : CCS, 2023, 10-10, Volume: 21, Issue:1

    Pyroptosis is crucial for controlling various immune cells. However, the role of allergen-induced CD11c + dendritic cell (DC) pyroptosis in allergic rhinitis (AR) remains unclear.. Mice were grouped into the control group, AR group and necrosulfonamide-treated AR group (AR + NSA group). The allergic symptom scores, OVA-sIgE titres, serum IL-1β/IL-18 levels, histopathological characteristics and T-helper cell-related cytokines were evaluated. CD11c/GSDMD-N-positive cells were examined by immunofluorescence analysis. Murine CD11c + bone marrow-derived DCs (BMDCs) were induced in vitro, stimulated with OVA/HDM, treated with necrosulfonamide (NSA), and further cocultured with lymphocytes to assess BMDC function. An adoptive transfer murine model was used to study the role of BMDC pyroptosis in allergic rhinitis.. Inhibiting GSDMD-N-mediated pyroptosis markedly protected against Th1/Th2/Th17 imbalance and alleviated inflammatory responses in the AR model. GSDMD-N was mainly coexpressed with CD11c (a DC marker) in AR mice. In vitro, OVA/HDM stimulation increased pyroptotic morphological abnormalities and increased the expression of pyroptosis-related proteins in a dose-dependent manner; moreover, inhibiting pyroptosis significantly decreased pyroptotic morphology and NLRP3, C-Caspase1 and GSDMD-N expression. In addition, OVA-induced BMDC pyroptosis affected CD4 + T-cell differentiation and related cytokine levels, leading to Th1/Th2/Th17 cell imbalance. However, the Th1/Th2/Th17 cell immune imbalance was significantly reversed by NSA. Adoptive transfer of OVA-loaded BMDCs promoted allergic inflammation, while the administration of NSA to OVA-loaded BMDCs significantly reduced AR inflammation.. Allergen-induced dendritic cell pyroptosis promotes the development of allergic rhinitis through GSDMD-N-mediated pyroptosis, which provides a clue to allergic disease interventions. Video Abstract.

    Topics: Allergens; Animals; Cytokines; Dendritic Cells; Inflammation; Mice; Mice, Inbred BALB C; Pyroptosis; Rhinitis, Allergic

2023
Inhibition of IL-1β release from macrophages targeted with necrosulfonamide-loaded porous nanoparticles.
    Journal of controlled release : official journal of the Controlled Release Society, 2022, Volume: 351

    Inflammation is required for protective responses against pathogens and is thus essential for survival, but sustained inflammation can lead to diseases, such as atherosclerosis and cancer. Two important mediators of inflammation are the cytokines IL-1β and IL-18, which are produced by myeloid cells of the immune system, including macrophages. These cytokines are released into the extracellular space through pores formed in the plasma membrane by the oligomerized protein gasdermin D (GSDMD). Necrosulfonamide (NSA) was recently identified as an effective GSDMD inhibitor and represents a promising therapeutic agent in GSDMD-dependent inflammatory diseases. Here, we targeted NSA to both mouse and human macrophages by using three different types of porous nanoparticles (NP), i.e. mesoporous silica (MSN), porous crosslinked cyclodextrin carriers (CD-NP), and a mesoporous magnesium-phosphate carrier (MPC-NP), all displaying high loading capacities for this hydrophobic drug. Cellular uptake and intracellular NSA delivery were tracked in time-lapse experiments by live-cell, high-throughput fluorescence microscopy, demonstrating rapid nanoparticle uptake and effective targeted delivery of NSA to phagocytic cells. Notably, a strong cytostatic effect was observed when a macrophage cell line was exposed to free NSA. In contrast, cell growth was much less affected when NSA was delivered via the nanoparticle carriers. Utilizing NSA-loaded nanoparticles, a successful concentration-dependent suppression of IL-1β secretion from freshly differentiated primary murine and human macrophages was observed. Functional assays showed the strongest suppressive effect on human macrophages when using CD-NP for NSA delivery, followed by MSN-NP. In contrast, MPC-NP completely blocked the metabolic activity in macrophages when loaded with NSA. This study demonstrates the potential of porous nanoparticles for the effective delivery of hydrophobic drugs to macrophages in order to suppress inflammatory responses.

    Topics: Animals; Humans; Inflammation; Macrophages; Mice; Nanoparticles; Porosity; Silicon Dioxide

2022
Necrosulfonamide ameliorates intestinal inflammation via inhibiting GSDMD-medicated pyroptosis and MLKL-mediated necroptosis.
    Biochemical pharmacology, 2022, Volume: 206

    Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract, while the present therapeutic efficacy is insufficient. In recent years, numerous studies have shown that necrosulfonamide (NSA) played a protective role in many inflammatory diseases by blocking mixed lineage kinase domain-like protein (MLKL) polymerization. However, the protective effect of NSA in dextran sodium sulfate (DSS)-induced colitis has not been reported. In the present study, we used DSS to establish mouse models of acute colitis to explore the proactive effect of NSA. Our study showed that NSA alleviated symptoms of DSS-induced colitis through reducing weight loss and disease activity index (DAI) score. Furthermore, NSA inhibited macrophages and CD4+/CD8 + T-cell accumulation in colon tissue caused by DSS. In addition, we found that NSA had the therapeutic effects on DSS-induced colitis. Mechanistically, we detected the expression level of phosphorylated MLKL, the release of LDH, cytokines, and N-gasdermin D (N-GSDMD) to examine necroptosis and pyroptosis pathways. We found NSA alleviated the severity of DSS-induced colitis by inhibiting the expressions of phosphorylated MLKL and N-GSDMD in vivo. In vitro experiments, we found NSA inhibited the release of inflammatory factors and LDH and the expressions of N-GSDMD in bone marrow-derived macrophages. Furthermore, we found NSA inhibited the expression of phosphorylated MLKL and necroptosis of NCM460 cell through western blot and flow cytometer. In general, this study reveals that NSA inhibits pyroptosis and necroptosis pathways to eventually alleviate intestinal inflammation, which may serve as a potential candidate for IBD therapy.

    Topics: Animals; Colitis; Dextran Sulfate; Inflammation; Inflammatory Bowel Diseases; Mice; Mice, Inbred C57BL; Necroptosis; Protein Kinases; Pyroptosis

2022