n-(4-(n-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide and Coronary-Artery-Disease

n-(4-(n-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide has been researched along with Coronary-Artery-Disease* in 1 studies

Other Studies

1 other study(ies) available for n-(4-(n-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)-3-(5-nitrothiophene-2-yl)acrylamide and Coronary-Artery-Disease

ArticleYear
Upregulation of miR-223 abrogates NLRP3 inflammasome-mediated pyroptosis to attenuate oxidized low-density lipoprotein (ox-LDL)-induced cell death in human vascular endothelial cells (ECs).
    In vitro cellular & developmental biology. Animal, 2020, Volume: 56, Issue:8

    MiR-223 is closely associated with pathogenesis of coronary artery disease (CAD); however, the molecular mechanisms are unclear. In the present study, the human vascular endothelial cells (ECs) were isolated from patients undergoing coronary artery bypass graft and treated with oxidized low-density lipoprotein (ox-LDL) to induce cellular CAD models in vitro. We found that ox-LDL inhibited cell proliferation and viability, and promoted cell apoptosis in ECs. Of note, ox-LDL promoted cell pyroptosis, and both the pyroptosis inhibitor necrosulfonamide (NSA) and NLRP3 ablation restored cell viability in ECs treated with ox-LDL, indicating that ox-LDL induced EC death by triggering cell pyroptosis. In addition, miR-223 was downregulated by ox-LDL in ECs, and miR-223 overexpression rescued cell viability in ECs treated with ox-LDL. Interestingly, there existed targeting sites in miR-223 and 3' untranslated regions (3' UTRs) of NLRP3 mRNA, and further experiments validated that miR-223 negatively regulated NLRP3 expressions in ECs at both transcriptional and translational levels. Finally, we verified that upregulation of NLRP3 abrogated the protective effects of miR-223 overexpression on ox-LDL-treated ECs. Collectively, this in vitro study proved that overexpression of miR-223 protected ox-LDL-stimulated ECs from death through inactivating NLRP3 inflammasome-mediated pyroptotic cell death.

    Topics: Acrylamides; Apoptosis; Base Sequence; Cell Proliferation; Cell Survival; Coronary Artery Disease; Endothelial Cells; HEK293 Cells; Humans; Inflammasomes; Lipoproteins, LDL; MicroRNAs; Models, Biological; NLR Family, Pyrin Domain-Containing 3 Protein; Pyroptosis; Sulfonamides; Up-Regulation

2020