n-(3-4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2-3-dihydroxypropyl)cyclopropane-1-sulfonamide and Disease-Models--Animal

n-(3-4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2-3-dihydroxypropyl)cyclopropane-1-sulfonamide has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for n-(3-4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2-3-dihydroxypropyl)cyclopropane-1-sulfonamide and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Apparent Diffusion Coefficient (ADC) predicts therapy response in pancreatic ductal adenocarcinoma.
    Scientific reports, 2017, 12-06, Volume: 7, Issue:1

    Recent advances in molecular subtyping of Pancreatic Ductal Adenocarcinoma (PDAC) support individualization of therapeutic strategies in this most aggressive disease. With the emergence of various novel therapeutic strategies and neoadjuvant approaches in this quickly deteriorating disease, robust approaches for fast evaluation of therapy response are urgently needed. To this aim, we designed a preclinical imaging-guided therapy trial where genetically engineered mice harboring endogenous aggressive PDAC were treated with the MEK targeting drug refametinib, which induces rapid and profound tumor regression in this model system. Multi-parametric non-invasive imaging was used for therapy response monitoring. A significant increase in the Diffusion-Weighted Magnetic Resonance Imaging derived Apparent Diffusion Coefficient (ADC) was noted already 24 hours after treatment onset. Histopathological analyses showed increased apoptosis and matrix remodeling at this time point. Our findings suggest the ADC parameter as an early predictor of therapy response in PDAC.

    Topics: Animals; Carcinoma, Pancreatic Ductal; Diffusion Magnetic Resonance Imaging; Diphenylamine; Disease Models, Animal; Humans; Image Processing, Computer-Assisted; MAP Kinase Kinase Kinases; Mice; Neoadjuvant Therapy; Pancreatic Neoplasms; Protein Kinase Inhibitors; Response Evaluation Criteria in Solid Tumors; Sulfonamides

2017
Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice.
    Science (New York, N.Y.), 2011, Apr-15, Volume: 332, Issue:6027

    Transforming growth factor-β (TGFβ) signaling drives aneurysm progression in multiple disorders, including Marfan syndrome (MFS), and therapies that inhibit this signaling cascade are in clinical trials. TGFβ can stimulate multiple intracellular signaling pathways, but it is unclear which of these pathways drives aortic disease and, when inhibited, which result in disease amelioration. Here we show that extracellular signal-regulated kinase (ERK) 1 and 2 and Smad2 are activated in a mouse model of MFS, and both are inhibited by therapies directed against TGFβ. Whereas selective inhibition of ERK1/2 activation ameliorated aortic growth, Smad4 deficiency exacerbated aortic disease and caused premature death in MFS mice. Smad4-deficient MFS mice uniquely showed activation of Jun N-terminal kinase-1 (JNK1), and a JNK antagonist ameliorated aortic growth in MFS mice that lacked or retained full Smad4 expression. Thus, noncanonical (Smad-independent) TGFβ signaling is a prominent driver of aortic disease in MFS mice, and inhibition of the ERK1/2 or JNK1 pathways is a potential therapeutic strategy for the disease.

    Topics: Animals; Anthracenes; Aorta; Aortic Aneurysm; Diphenylamine; Disease Models, Animal; Disease Progression; Enzyme Activation; Losartan; MAP Kinase Signaling System; Marfan Syndrome; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase 8; Protein Kinase Inhibitors; Smad2 Protein; Smad4 Protein; Sulfonamides; Transforming Growth Factor beta

2011