n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide has been researched along with Necrosis* in 2 studies
2 other study(ies) available for n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide and Necrosis
Article | Year |
---|---|
Aldehyde dehydrogenase-2 activation by Alda-1 decreases necrosis and fibrosis after bile duct ligation in mice.
Liver fibrosis is a leading cause of mortality worldwide. Oxidative stress is a key component in the pathogenesis of liver fibrosis. We investigated the role of aldehyde formation resulting from lipid peroxidation in cholestatic liver injury and fibrosis.. C57Bl/6J mice underwent bile duct ligation (BDL) or sham operation. One hour after surgery and daily thereafter, animals were given Alda-1 (20 mg/kg, s.c.), an aldehyde dehydrogenase-2 activator, or equivalent volume of vehicle. Blood and livers were collected after 3 and 14 days.. Serum alanine aminotransferase (ALT) increased from 39.8 U/L after sham operation to 537 U/L 3 days after BDL, which Alda-1 decreased to 281 U/L. Biliary infarcts with a periportal distribution developed with an area of 7.8% at 14 days after BDL versus 0% area after sham operation. Alda-1 treatment with BDL decreased biliary infarcts to 1.9%. Fibrosis detected by picrosirius red staining increased from 1.6% area in sham to 7.3% after BDL, which decreased to 3.8% with Alda-1. Alda-1 suppression of fibrosis was additionally confirmed by second harmonic generation microscopy. After BDL, collagen-I mRNA increased 12-fold compared to sham, which decreased to 6-fold after Alda-1 treatment. Smooth muscle α-actin expression in the liver, a marker of activated stellate cells, increased from 1% area in sham to 18.7% after BDL, which decreased to 5.3% with Alda-1. CD68-positive macrophages increased from 33.4 cells/field in sham to 134.5 cells/field after BDL, which decreased to 64.9 cells/field with Alda-1. Lastly, 4-hydroxynonenal adduct (4-HNE) immunofluorescence increased from 2.5% area in sham to 14.1% after BDL. Alda-1 treatment decreased 4-HNE to 2.2%.. Accelerated aldehyde degradation by Alda-1 decreases BDL-induced liver necrosis, inflammation, and fibrosis, implying that aldehydes play an important role in the pathogenesis of cholestatic liver injury and fibrosis. Topics: Aldehyde Dehydrogenase, Mitochondrial; Animals; Benzamides; Benzodioxoles; Bile Ducts; Disease Models, Animal; Humans; Ligation; Liver; Liver Cirrhosis; Mice; Necrosis; Oxidative Stress | 2019 |
Alterations in necroptosis during ALDH2‑mediated protection against high glucose‑induced H9c2 cardiac cell injury.
The aim of the present study was to investigate whether necroptosis occurs in high glucose (HG)-induced H9c2 cardiac cell injury and whether the activation of aldehyde dehydrogenase 2 (ALDH2) can inhibit necroptosis. H9c2 cardiac cells were treated with 35 mM glucose to establish a HG‑induced cell injury model. Alda‑1 (20 µM), a specific activator of ALDH2 and necrostatin‑1 (Nec‑1, 100 µM), an inhibitor of necroptosis were used to treat H9c2 cardiac cells under HG conditions. Cell viability was measured using a Cell Counting Kit‑8 assay and reactive oxygen species (ROS) generation was measured by the dihydroethidium staining method. ALDH2 activity was measured at 450 nm. The mRNA and protein expression of ALDH2, necroptosis‑associated genes, receptor‑interacting protein (RIP)1, RIP3 and mixed lineage kinase domain like pseudokinase (MLKL), were analyzed by reverse transcription‑quantitative polymerase chain reaction and western blotting. The expression of cleaved caspase‑3 protein was also examined by western blotting. The results demonstrated that under HG conditions, cell viability, ALDH2 activity, mRNA and protein expression were decreased. Furthermore, ROS generation, mRNA and protein expression of RIP1, RIP3, MLKL and the protein expression of cleaved caspase‑3 were increased. Treatment with Alda‑1 or Nec‑1 attenuated HG‑induced downregulation of ALDH2 activity, mRNA and protein expression. In addition, RIP1, RIP3, MLKL mRNA, and protein expression were downregulated. Furthermore, Alda‑1 but not Nec‑1 decreased cleaved caspase‑3 protein expression. Collectively these data indicated that activation of ALDH2 protected H9c2 cardiac cells against HG‑induced injury, partly by inhibiting the occurrence of necroptosis. Topics: Aldehyde Dehydrogenase, Mitochondrial; Animals; Apoptosis; Benzamides; Benzodioxoles; Caspase 3; Cell Line; Down-Regulation; Glucose; Imidazoles; Indoles; Myocytes, Cardiac; Necrosis; Protein Kinases; Protein Serine-Threonine Kinases; Rats; Reactive Oxygen Species; Receptor-Interacting Protein Serine-Threonine Kinases | 2018 |