n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide and Inflammation

n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide has been researched along with Inflammation* in 3 studies

Other Studies

3 other study(ies) available for n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide and Inflammation

ArticleYear
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2).
    International journal of molecular sciences, 2017, Feb-17, Volume: 18, Issue:2

    The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE

    Topics: Aldehyde Dehydrogenase, Mitochondrial; Aldehydes; Animals; Apolipoproteins E; Apoptosis; Benzamides; Benzodioxoles; Enzyme Activation; Frontal Lobe; Gene Expression Regulation; Hippocampus; Immunohistochemistry; Inflammation; Isotope Labeling; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; Mitochondrial Proteins; Neuronal Plasticity; Organelle Biogenesis; Proteomics; RNA, Messenger

2017
Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain.
    Science translational medicine, 2014, Aug-27, Volume: 6, Issue:251

    Exogenous aldehydes can cause pain in animal models, suggesting that aldehyde dehydrogenase-2 (ALDH2), which metabolizes many aldehydes, may regulate nociception. To test this hypothesis, we generated a knock-in mouse with an inactivating point mutation in ALDH2 (ALDH2*2), which is also present in human ALDH2 of ~540 million East Asians. The ALDH2*1/*2 heterozygotic mice exhibited a larger response to painful stimuli than their wild-type littermates, and this heightened nociception was inhibited by an ALDH2-selective activator (Alda-1). No effect on inflammation per se was observed. Using a rat model, we then showed that nociception tightly correlated with ALDH activity (R(2) = 0.90) and that reduced nociception was associated with less early growth response protein 1 (EGR1) in the spinal cord and less reactive aldehyde accumulation at the insult site (including acetaldehyde and 4-hydroxynonenal). Further, acetaldehyde- and formalin-induced nociceptive behavior was greater in the ALDH2*1/*2 mice than in the wild-type mice. Finally, Alda-1 treatment was even beneficial when given after the inflammatory agent was administered. Our data in rodent models suggest that the mitochondrial enzyme ALDH2 regulates nociception and could serve as a molecular target for pain control, with ALDH2 activators, such as Alda-1, as potential non-narcotic, cardiac-safe analgesics. Furthermore, our results suggest a possible genetic basis for East Asians' apparent lower pain tolerance.

    Topics: Acetaldehyde; Acute Pain; Aldehyde Dehydrogenase; Aldehyde Dehydrogenase, Mitochondrial; Animals; Behavior, Animal; Benzamides; Benzodioxoles; Disease Models, Animal; Enzyme Activation; Formaldehyde; Heterozygote; Hyperalgesia; Inflammation; Mice, Inbred C57BL; Mitochondrial Proteins; Nociception; Rats

2014
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Current protocols in cytometry, 2010, Volume: Chapter 13

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening.

    Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature

2010