n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide has been researched along with Acute-Lung-Injury* in 2 studies
2 other study(ies) available for n-(1-3-benzodioxol-5-ylmethyl)-2-6-dichlorobenzamide and Acute-Lung-Injury
Article | Year |
---|---|
Alda-1 attenuates hyperoxia-induced mitochondrial dysfunction in lung vascular endothelial cells.
Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option. Topics: Acute Lung Injury; Aldehyde Dehydrogenase, Mitochondrial; Benzamides; Benzodioxoles; Endothelial Cells; Gene Expression Regulation; Humans; Hyperoxia; Microvessels; Mitochondria; Oxidative Stress; Oxygen | 2019 |
Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.
Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation. Topics: Acetylcysteine; Acrolein; Acute Lung Injury; AMP-Activated Protein Kinases; Animals; Benzamides; Benzodioxoles; Endothelial Cells; Endothelium, Vascular; Enzyme Activation; Male; Mice; Mitochondria; Oxygen Consumption | 2017 |