n-((1s-trans)-2-hydroxycyclopentyl)adenosine has been researched along with Insulin-Resistance* in 1 studies
1 other study(ies) available for n-((1s-trans)-2-hydroxycyclopentyl)adenosine and Insulin-Resistance
Article | Year |
---|---|
Short-term metabolic and haemodynamic effects of GR79236 in normal and fructose-fed rats.
The adenosine (A1) receptor agonist, GR79236 (N-[(1S,trans)-2-hydroxycyclopentyl]adenosine), inhibits catecholamine-induced lipolysis in vitro, but the short-term metabolic and haemodynamic effects have not been previously reported in the fructose fed model of insulin resistance, dyslipidaemia and hypertension. This study reports the effects of GR79236 (1 mg/kg/day for 8 days) on nonesterified free fatty acid and triglyceride metabolism, oral and i.v. glucose tolerance, blood pressure and heart rate, and insulin sensitivity, in normal rats and rats fed a fructose-enriched diet. In normal rats, GR79236 significantly reduced fasting glucose (25%), free fatty acid (50%) and triglyceride (55%) concentrations, and improved glucose tolerance (AUC[glu] 21.2 +/- 1.3 vs. 16.5 +/- 1.1 mmol h/l, p < 0.05). Fructose feeding induced a state of insulin resistance and dyslipidaemia, as shown by an increase in steady-state plasma glucose levels (7.1 vs. 6.1 mmol/l), impaired i.v. glucose tolerance and a 3-fold rise in fasting triglyceride levels; fructose-fed rats also developed a significant increase in blood pressure. GR79236 ameliorated the effects of fructose feeding on fatty acid and triglyceride levels, and blood pressure, and improved i.v. glucose tolerance in fructose-fed rats. The hypotriglyceridaemic effect was due to a reduction in triglyceride secretion rate (17.3 +/- 1.7 vs. 30.2 +/- 1.1). Thus, in normal rats and in a dietary-induced rodent model of insulin resistance, dyslipidaemia and hypertension, GR79236 has lipid-lowering and glucose-lowering activity, as well as haemodynamic effects, which are potentially useful for treating both the metabolic and haemodynamic features of insulin resistance and NIDDM in humans. Topics: Adenosine; Animals; Blood Glucose; Blood Pressure; Fatty Acids; Fructose; Glucose Tolerance Test; Heart Rate; Hypolipidemic Agents; Insulin; Insulin Resistance; Male; Purinergic P1 Receptor Agonists; Rats; Rats, Sprague-Dawley; Triglycerides | 1997 |