n(6)-cyclopentyladenosine and Nerve-Degeneration

n(6)-cyclopentyladenosine has been researched along with Nerve-Degeneration* in 3 studies

Other Studies

3 other study(ies) available for n(6)-cyclopentyladenosine and Nerve-Degeneration

ArticleYear
A1 adenosine receptor activation induces ventriculomegaly and white matter loss.
    Neuroreport, 2002, Jul-02, Volume: 13, Issue:9

    A1 adenosine receptors (A1ARs) are widely expressed in the brain during development. To examine whether A1AR activation can alter postnatal brain formation, neonatal rats from postnatal days 3 to 14 were treated with the A1AR agonist N6-cyclopentyladenosine (CPA) in the presence or absence of the peripheral A1AR antagonist 8-(p-sulfophenyl)-theophylline (8SPT). CPA or CPA + 8SPT treatment resulted in reductions in white matter volume, ventriculomegaly, and neuronal loss. Quantitative electron microscopy revealed reductions in total axon volume following A1AR agonist treatment. We also observed reduced expression of myelin basic protein in treated animals. Showing that functional A1ARs were present over the ranges of ages studies, high levels of specific [3H]CCPA binding were observed at PD 4, 7 and 14, and receptor-G protein coupling was present at each age. These observations show that activation of A1ARs with doses of CPA that mimic the effects of high adenosine levels results in damage to the developing brain.

    Topics: Adenosine; Animals; Animals, Newborn; Body Weight; Cell Count; Cerebral Cortex; Cerebral Ventricles; Drug Combinations; Drug Interactions; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Hippocampus; Microscopy, Electron; Myelin Basic Protein; Nerve Degeneration; Nerve Fibers, Myelinated; Neuroglia; Neurons; Presynaptic Terminals; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P1; Telencephalon; Theophylline

2002
Endogenous adenosine protects CA1 neurons from kainic acid-induced neuronal cell loss in the rat hippocampus.
    The European journal of neuroscience, 1999, Volume: 11, Issue:10

    CA3 pyramidal neurons in the rat hippocampus show selective vulnerability to the intracerebroventricular injection of kainic acid (KA). However, the mechanism of this selective neuronal vulnerability remains unclear. In this study, we examined the contribution of endogenous adenosine, a potent inhibitory neuromodulator, to the differences in the neuronal vulnerability of the hippocampus, using microtubule-associated protein (MAP)-2, phosphorylated c-Jun, and major histocompatibility complex (MHC) class II immunoreactivities as markers for neuronal cell loss, neuronal apoptosis and glial activation, respectively. Pretreatment with 8-cyclopenthyltheophylline (CPT), an A1 adenosine receptor antagonist, significantly exacerbated KA-induced neuronal cell loss in both the CA1 and CA3. Although c-Jun phosphorylation, a critical step in neuronal apoptosis, was not detected in the vehicle-injected rat hippocampus, c-Jun phosphorylation was induced in the CA3 by the injection of KA alone. Pretreatment with CPT induced c-Jun phosphorylation in both the CA1 and CA3. MHC class II antigen was also detected in the regions of c-Jun phosphorylation. Coadministration of N6-cyclopenthyladenosine (CHA), an A1 adenosine receptor agonist, attenuated the neuronal cell loss in the CA1 and CA3 with or without pretreatment with CPT. These results strongly suggest that endogenous adenosine has neuroprotective effects against excitotoxin-induced neurodegeneration in the CA1 through its A1 receptors.

    Topics: Adenosine; Animals; Apoptosis; Disease Models, Animal; Excitatory Amino Acid Agonists; Glial Fibrillary Acidic Protein; Hippocampus; Histocompatibility Antigens Class II; Injections, Intraventricular; Kainic Acid; Macrophage-1 Antigen; Male; Microtubule-Associated Proteins; Nerve Degeneration; Neuroglia; Neurons; Phosphorylation; Proto-Oncogene Proteins c-jun; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptors, Purinergic P1; Theophylline

1999
Intraspinal injection of adenosine agonists protect against L-NAME induced neuronal loss in the rat.
    Journal of neurotrauma, 1998, Volume: 15, Issue:7

    Intraspinal injection of the nonspecific inhibitor of nitric oxide synthase N-nitro-L-arginine methyl ester (L-NAME) results in a dose-dependent loss of neurons in the rat spinal cord. This effect is thought to result from a reduction in basal levels of nitric oxide (NO), thereby producing an ischemic reaction secondary to vasoconstriction and reduced spinal cord blood flow (SCBF). An important component of this ischemic reaction is the release of excitatory amino acids and the initiation of an excitotoxic cascade. In the present study, microinjections of adenosine A1 and A2 receptor agonists were made in the spinal cord to evaluate the neuroprotective effects of these drugs against neuronal loss produced by L-NAME. Animals were divided into six groups based on the composition of injected solutions: (a) L-NAME; (b) L-NAME + N6-cyclopentyladenosine (CPA, A1 agonist); (c) L-NAME + 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA, A2 agonist); (d) L-NAME + CPA + CPCA; (e) N-methyl D-aspartate (NMDA); and (f) NMDA + CPA. Injections of L-NAME or NMDA produced a unilateral loss of spinal neurons, a local inflammatory response, and darkly stained pyknotic nuclei surrounding the area of neuronal loss. CPA and CPCA significantly reduced the area of L-NAME-induced neuronal loss, and a synergistic effect was observed when ineffective doses of these agonists were co-injected with L-NAME. The excitotoxic effects of NMDA were not affected by CPA. The results have shown that A1 and A2 receptor agonists provide significant neuroprotection against L-NAME induced neuronal loss, presumably by inhibiting ischemia induced release of excitatory amino acids (A1 agonist), or by restoring SCBF secondary to vasodilation (A2 agonist). It is suggested by these results that the intraspinal injection of L-NAME is an effective model to study the pathological consequences of vasoconstriction, reduced SCBF, and ischemia secondary to decreased NO production in the rat spinal cord. Finally, the results provide support for the continued investigation of specific adenosine agonists as therapeutic agents directed against the ischemic and excitotoxic components of spinal injury.

    Topics: Adenosine; Animals; Disease Models, Animal; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Injections, Spinal; Male; N-Methylaspartate; Nerve Degeneration; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Purinergic P1 Receptor Agonists; Purinergic P2 Receptor Agonists; Rats; Rats, Long-Evans; Spinal Cord

1998