n(6)-cyclohexyladenosine and Myocardial-Infarction

n(6)-cyclohexyladenosine has been researched along with Myocardial-Infarction* in 2 studies

Other Studies

2 other study(ies) available for n(6)-cyclohexyladenosine and Myocardial-Infarction

ArticleYear
Adenosine A₂A and A₂B receptors are both required for adenosine A₁ receptor-mediated cardioprotection.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:3

    All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.

    Topics: Adenosine; Adenosine A1 Receptor Agonists; Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Agonists; Analysis of Variance; Animals; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Perfusion; Receptor Cross-Talk; Receptor, Adenosine A1; Receptor, Adenosine A2A; Receptor, Adenosine A2B; Time Factors; Ventricular Function, Left; Ventricular Pressure

2011
[Cardioprotective effect of combined use of coenzyme Q9 and cyclohexyladenosine in ischemia, reperfusion and acute myocardial infarction].
    Kardiologiia, 1991, Volume: 31, Issue:6

    Effects of coenzyme Q9 (25 mg/kg), N6-cyclohexyl adenosine (CHA, 100 micrograms/kg) and their combination were compared in rats with short-term or permanent ligation of the left coronary artery. The following parameters were evaluated in three series of experiments: 1) incidence and duration of ventricular fibrillation and tachycardia during coronary occlusion (10 min) and consecutive reperfusion (5 min); 2) contractility and electrical stability of the heart (ventricular fibrillation threshold) in animals with 2-day myocardial infarction; 3) ischemic myocardial mass after coronary occlusion (5 min) and necrotic tissue mass in 2-day myocardial infarction. The rats were given oral drugs 5 days and 2 hours before the study. All the experiments were performed in open-chest anesthetized (nembutal, 50 mg/kg) rats exposed to ventilation at room air. Both the coenzyme Q9 and CHA significantly reduced the incidence and duration of coronary occlusion and reperfusion arrhythmias, prevented cardiac contractile depression (heart rate.developed pressure) and increased ventricular fibrillation threshold). The effect of coenzyme Q9 was more marked than that of CHA. Coenzyme Q9 substantially reduced necrotic tissue mass while CHA diminished ischemic tissue mass. At the same time the total cardioprotective action of the Q9 + CHA combination was more pronounced than that of them used alone.

    Topics: Adenosine; Animals; Disease Models, Animal; Drug Evaluation, Preclinical; Heart Arrest, Induced; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Rats; Rats, Inbred Strains; Ubiquinone

1991