n(6)-(1-carboxyethyl)lysine has been researched along with Diabetes-Mellitus* in 2 studies
2 other study(ies) available for n(6)-(1-carboxyethyl)lysine and Diabetes-Mellitus
Article | Year |
---|---|
Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.
Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients. Topics: Animals; Astrocytes; Biological Transport; Diabetes Mellitus; Energy Metabolism; Glucose; Glutamate-Ammonia Ligase; Glutamic Acid; Hippocampus; Hyperglycemia; Lysine; Male; Oxidation-Reduction; Pyruvaldehyde; Rats; Rats, Wistar; Reactive Oxygen Species; Receptor for Advanced Glycation End Products; S100 Calcium Binding Protein beta Subunit | 2016 |
Synthesis of stable isotope-labelled monolysyl advanced glycation endproducts.
Advanced Glycation Endproducts (AGEs) are modified amino acids that form on proteins and are known to be implicated in the pathogenesis of diabetes and related diseases. Ready access to synthetic stable isotope-labelled AGEs allows for quantitative mass spectrometry studies to be undertaken, providing key insights into the roles AGEs play in the progression of such diseases. However, the majority of current syntheses of these compounds suffer from poor yields and lengthy procedures and are not suitable for the purposes required here. Here, we report robust syntheses of stable isotope-labelled monolysyl AGEs, N(ε)-(carboxymethyl)lysine, N(ε)-(carboxyethyl)lysine and pyrraline, that provide straightforward access to these compounds for quantitative amino acid analysis. This work will facilitate future investigations with these compounds and lead to a better understanding of the roles they play in diabetes and related diseases. Topics: Diabetes Mellitus; Glycation End Products, Advanced; Isotope Labeling; Lysine; Mass Spectrometry; Norleucine; Pyrroles | 2013 |