Page last updated: 2024-09-05

n(4)-hydroxycytidine and Disease Models, Animal

n(4)-hydroxycytidine has been researched along with Disease Models, Animal in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's2 (100.00)2.80

Authors

AuthorsStudies
Agostini, ML; Baric, RS; Bluemling, GR; Brown, AJ; Chappell, JD; Denison, MR; Dinnon, KH; George, AS; Graham, RL; Harcourt, J; Hill, CS; Hughes, TM; Kolykhalov, AA; Leist, SR; Lu, X; Montgomery, SA; Natchus, MG; Painter, G; Pruijssers, AJ; Saindane, M; Schäfer, A; Sheahan, TP; Sims, AC; Stevens, LJ; Swanstrom, R; Tamin, A; Thornburg, NJ; Zhou, S1
Hampton, T1

Other Studies

2 other study(ies) available for n(4)-hydroxycytidine and Disease Models, Animal

ArticleYear
An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice.
    Science translational medicine, 2020, 04-29, Volume: 12, Issue:541

    Topics: Adenosine Monophosphate; Alanine; Animals; Antibiotic Prophylaxis; Antiviral Agents; Betacoronavirus; Cell Line; Coronavirus Infections; COVID-19; Cytidine; Disease Models, Animal; Drug Resistance, Viral; Humans; Hydroxylamines; Lung; Mice; Mice, Inbred C57BL; Middle East Respiratory Syndrome Coronavirus; Models, Molecular; Mutation; Pandemics; Pneumonia, Viral; Primary Cell Culture; Random Allocation; Respiratory System; Ribonucleosides; RNA-Dependent RNA Polymerase; RNA, Viral; SARS-CoV-2; Virus Replication

2020
New Flu Antiviral Candidate May Thwart Drug Resistance.
    JAMA, 2020, Jan-07, Volume: 323, Issue:1

    Topics: Animals; Antiviral Agents; Cytidine; Disease Models, Animal; Drug Resistance, Viral; Humans; Hydroxylamines; Influenza, Human; Macaca; Ribonucleosides

2020