myxothiazol and Reperfusion-Injury

myxothiazol has been researched along with Reperfusion-Injury* in 2 studies

Other Studies

2 other study(ies) available for myxothiazol and Reperfusion-Injury

ArticleYear
Akt Inhibition as Preconditioning Treatment to Protect Kidney Cells against Anoxia.
    International journal of molecular sciences, 2021, Dec-23, Volume: 23, Issue:1

    Lesions issued from the ischemia/reperfusion (I/R) stress are a major challenge in human pathophysiology. Of human organs, the kidney is highly sensitive to I/R because of its high oxygen demand and poor regenerative capacity. Previous studies have shown that targeting the hypusination pathway of eIF5A through GC7 greatly improves ischemic tolerance and can be applied successfully to kidney transplants. The protection process correlates with a metabolic shift from oxidative phosphorylation to glycolysis. Because the protein kinase B Akt is involved in ischemic protective mechanisms and glucose metabolism, we looked for a link between the effects of GC7 and Akt in proximal kidney cells exposed to anoxia or the mitotoxic myxothiazol. We found that GC7 treatment resulted in impaired Akt phosphorylation at the Ser473 and Thr308 sites, so the effects of direct Akt inhibition as a preconditioning protocol on ischemic tolerance were investigated. We evidenced that Akt inhibitors provide huge protection for kidney cells against ischemia and myxothiazol. The pro-survival effect of Akt inhibitors, which is reversible, implied a decrease in mitochondrial ROS production but was not related to metabolic changes or an antioxidant defense increase. Therefore, the inhibition of Akt can be considered as a preconditioning treatment against ischemia.

    Topics: Animals; Antioxidants; Cells, Cultured; Hypoxia; Ischemic Preconditioning; Kidney; Methacrylates; Mice; Mitochondria; Phosphorylation; Protective Agents; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Reperfusion Injury; Thiazoles

2021
Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 300, Issue:3

    The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-L-arginine and N-iminoethyl-L-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.

    Topics: Animals; Chick Embryo; Electron Transport Complex I; Electron Transport Complex III; Glycogen; Glycolysis; Heart; Hypoxia; Iodoacetates; Lactates; Methacrylates; Mitochondria, Heart; Myocardium; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Ornithine; Oxidative Stress; Reactive Oxygen Species; Reperfusion Injury; Rotenone; Thiazoles

2011