myxothiazol and Mitochondrial-Diseases

myxothiazol has been researched along with Mitochondrial-Diseases* in 2 studies

Other Studies

2 other study(ies) available for myxothiazol and Mitochondrial-Diseases

ArticleYear
Functional dynamic compartmentalization of respiratory chain intermediate substrates: implications for the control of energy production and mitochondrial diseases.
    The international journal of biochemistry & cell biology, 2008, Volume: 40, Issue:8

    Activity defects in respiratory chain complexes are responsible for a large variety of pathological situations, including neuromuscular diseases and multisystemic disorders. Their impact on energy production is highly variable and disproportional. The same biochemical or genetic defect can lead to large differences in clinical symptoms and severity between tissues and patients, making the pathophysiological analysis of mitochondrial diseases difficult. The existence of compensatory mechanisms operating at the level of the respiratory chain might be an explanation for the biochemical complexity observed for respiratory defects. Here, we analyzed the role of cytochrome c and coenzyme Q in the attenuation of complex III and complex IV pharmacological inhibition on the respiratory flux. Spectrophotometry, HPLC-EC, polarography and enzymology permitted the calculation of molar ratios between respiratory chain components, giving values of 0.8:61:3:12:6.8 in muscle and 1:131:3:9:6.5 in liver, for CII:CoQ:CIII:Cyt c:CIV. The results demonstrate the dynamic functional compartmentalization of respiratory chain substrates, with the existence of a substrate pool that can be recruited to maintain energy production at normal levels when respiratory chain complexes are inhibited. The size of this reserve was different between muscle and liver, and in proportion to the magnitude of attenuation of each respiratory defect. Such functional compartmentalization could result from the recently observed physical compartmentalization of respiratory chain substrates. The dynamic nature of the mitochondrial network may modulate this compartmentalization and could play a new role in the control of mitochondrial respiration as well as apoptosis.

    Topics: Animals; Cytochromes c; Electron Transport; Electron Transport Complex III; Electron Transport Complex IV; Male; Methacrylates; Mitochondria, Liver; Mitochondria, Muscle; Mitochondrial Diseases; Oxygen Consumption; Potassium Cyanide; Rats; Rats, Wistar; Thiazoles; Ubiquinone

2008
Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria.
    Archives of biochemistry and biophysics, 2003, Jun-01, Volume: 414, Issue:1

    Complex III in the mitochondrial electron transport chain is a proposed site for the enhanced production of reactive oxygen species that contribute to aging in the heart. We describe a defect in the ubiquinol binding site (Q(O)) within cytochrome b in complex III only in the interfibrillar population of cardiac mitochondria during aging. The defect is manifested as a leak of electrons through myxothiazol blockade to reduce cytochrome b and is observed whether cytochrome b in complex III is reduced from the forward or the reverse direction. The aging defect increases the production of reactive oxygen species from the Q(O) site of complex III in interfibrillar mitochondria. A greater leak of electrons from complex III during the oxidation of ubiquinol is a likely mechanism for the enhanced oxidant production from mitochondria that contributes to aging in the rat heart.

    Topics: Aging; Animals; Antimycin A; Binding Sites; Cytochrome b Group; Electron Transport; Electron Transport Complex III; Enzyme Activation; Hydroquinones; In Vitro Techniques; Male; Methacrylates; Mitochondria, Heart; Mitochondrial Diseases; Myofibrils; Oxidation-Reduction; Polyenes; Rats; Reactive Oxygen Species; Thiazoles; Ubiquinone

2003