myelin-basic-protein has been researched along with Cicatrix* in 4 studies
4 other study(ies) available for myelin-basic-protein and Cicatrix
Article | Year |
---|---|
[Effect of chondroitinase ABC on axonal myelination and glial scar after spinal cord injury in rats].
To investigate the effects of chondroitinase ABC (ChABC) on axonal myelination and glial scar after spinal cord injury (SCI) in rats.. Seventy-two adult male Sprague Dawley rats were randomly assigned into ChABC treatment group (group A), saline treatment group (group B), and sham operation group (group C), 24 rats in each group. In groups and B, the SCI model was established with modified Allen's method and then the rats of groups A and B were administrated by subarachnoid injection of 6 microL ChABC (1 U/mL) and saline respectively at 1 hour after injury and every day for 1 week; the rats of group C served as control, which canal was opened without damage to spinal cord. At 1, 7, 14, and 28 days after operation, the locomotor functions were evaluated according to the Basso-Beattie-Bresnahan (BBB) score scale; and the spinal cord samples were harvested for HE staining, Nissl staining, and immunohistochemistry analysis to detect the change of myelin basic protein (MBP), growth associated protein 43 (GAP-43), and glial fibrillary acidic protein (GFAP) of the injured spinal cord.. At different time points, the BBB score of group C was significantly higher than those of groups A and B (P < 0.05), and the BBB score of group was significantly better than that of group B at 14 and 28 days after operation (P < 0.05). HE staining and Nissl staining showed that the morphous and the neuron number of the remainant injured spinal cord in group A were better than those in group B. The integral absorbance (IA) values of MBP and GAP-43 and the positive area of GFAP after SCI in groups A and B were significantly higher than those in group C at different time points (P < 0.05), and the IA values of MBP and GAP-43 were significantly higher in group A than those in group B at 7, 14, and 28 days after operation (P < 0.05), but the positive area of GFAP was significantly smaller in group A than that in group B (P < 0.05).. The ChABC can effectively improve the microenvironment of the injured spinal cord of rats, enhance the expressions of MBP and GAP-43, and inhibit the expression of GFAP, which promotes the axonal regeneration and myelination, attenuate glial scar formation, and promote the recovery of nerve function. Topics: Animals; Astrocytes; Axons; Chondroitin ABC Lyase; Cicatrix; Disease Models, Animal; GAP-43 Protein; Glial Fibrillary Acidic Protein; Immunohistochemistry; Male; Myelin Basic Protein; Myelin Sheath; Nerve Regeneration; Rats; Rats, Sprague-Dawley; Recovery of Function; Spinal Cord; Spinal Cord Injuries | 2013 |
Astrogliosis during acute and chronic cuprizone demyelination and implications for remyelination.
In multiple sclerosis, microglia/macrophage activation and astrocyte reactivity are important components of the lesion environment that can impact remyelination. The current study characterizes these glial populations relative to expression of candidate regulatory molecules in cuprizone demyelinated corpus callosum. Importantly, periods of recovery after acute or chronic cuprizone demyelination are examined to compare conditions of efficient versus limited remyelination, respectively. Microglial activation attenuates after early demyelination. In contrast, astrocyte reactivity persists throughout demyelination and a 6-week recovery period following either acute or chronic demyelination. This astrocyte reaction is characterized by (a) early proliferation, (b) increased expression of GFAP (glial fibrillary acidic protein), Vim (vimentin), Fn1 (fibronectin) and CSPGs (chondroitin sulphate proteoglycans) and (c) elaboration of a dense network of processes. Glial processes elongated in the axonal plane persist throughout lesion areas during both the robust remyelination that follows acute demyelination and the partial remyelination that follows chronic demyelination. However, prolonged astrocyte reactivity with chronic cuprizone treatment does not progress to barrier formation, i.e. dense compaction of astrocyte processes to wall off the lesion area. Multiple candidate growth factors and inflammatory signals in the lesion environment show strong correlations with GFAP across the acute cuprizone demyelination and recovery time course, yet there is more divergence across the progression of chronic cuprizone demyelination and recovery. However, differential glial scar formation does not appear to be responsible for differential remyelination during recovery in the cuprizone model. The astrocyte phenotype and lesion characteristics in this demyelination model inform studies to identify triggers of non-remyelinating sclerosis in chronic multiple sclerosis lesions. Topics: Animals; Cell Proliferation; Chondroitin Sulfate Proteoglycans; Cicatrix; Cuprizone; Demyelinating Diseases; Disease Models, Animal; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Gliosis; Male; Mice; Mice, Inbred C57BL; Monoamine Oxidase Inhibitors; Myelin Basic Protein; Statistics as Topic; Time Factors | 2012 |
Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord.
Spinal cords of adult cats were transected and subsequently reconnected with the biocompatible porous poly (N-[2-hydroxypropyl] methacrylamide) hydrogel, NeuroGel. Tissue repair was examined at various time points from 6-21 months post reconstructive surgery. We examined two typical phenomena, astrogliosis and scar formation, in spines reconstructed with the gel and compared them to those from transected non-reconstructed spines. Confocal examination with double immunostaining for glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) showed that the interface formed between the hydrogel and the spine stumps did prevent scar formation and only a moderate gliosis was observed. The gel implant provided an adequate environment for growth of myelinated fibers and we saw angiogenesis within the gel. Electron microscopy showed that regenerating axons were myelinated by Schwann cells rather than oligodendrocytes. Moreover, the presence of the gel implant lead to a considerable reduction in damage to distal caudal portions of the spine as assessed by the presence of more intact myelinated fibers and a reduction of myelin degradation. Neurologic assessments of hindlimb movement at various times confirmed that spinal cord reconstruction was not only structural but also functional. We conclude that NeuroGel lead to functional recovery by providing a favorable substrate for regeneration of transected spinal cord, reducing glial scar formation and allowing angiogenesis. Topics: Animals; Biocompatible Materials; Cats; Cicatrix; Female; Glial Fibrillary Acidic Protein; Gliosis; Hindlimb; Hydrogels; Methacrylates; Microscopy, Electron; Motor Activity; Myelin Basic Protein; Myelin Sheath; Neovascularization, Physiologic; Nerve Fibers, Myelinated; Nerve Regeneration; Recovery of Function; Schwann Cells; Spinal Cord Injuries; Treatment Outcome | 2004 |
Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A.
We have investigated the hypothesis that the chemorepellent Semaphorin3A may be involved in the failure of axonal regeneration after injury to the ascending dorsal columns of adult rats. Following transection of the thoracic dorsal columns, fibroblasts in the dorsolateral parts of the lesion site showed robust expression of Semaphorin3A mRNA. In addition, dorsal root ganglion (DRG) neurons with projections through the dorsal columns to the injury site persistently expressed both Semaphorin3A receptor components, neuropilin-1 and plexin-A1. These ascending DRG collaterals failed to invade scar regions occupied by Semaphorin3A-positive fibroblasts, even in animals which had received conditioning lesions of the sciatic nerve to enhance regeneration. Other axon populations in the dorsal spinal cord were similarly unable to penetrate Semaphorin3A-positive scar tissue. These data suggest that Semaphorin3A may create an exclusion zone for regenerating dorsal column fibres and that enhancing the intrinsic regenerative response of DRG neurons has only limited effects on axonal regrowth. Tenascin-C and chondroitin sulphate proteoglycans were also detected at the injury site, which was largely devoid of central nervous system (CNS) myelin, showing that several classes of inhibitory factors, including semaphorins, with only partially overlapping spatial and temporal patterns of expression are in a position to participate in preventing regenerative axonal growth in the injured dorsal columns. Interestingly, conditioning nerve injuries enabled numerous ascending DRG axons to regrow across areas of strong tenascin-C and chondroitin sulphate proteoglycan expression, while areas containing Semaphorin3A and CNS myelin were selectively avoided by (pre)primed axonal sprouts. Topics: Animals; Axons; Cell Adhesion Molecules; Chondroitin Sulfate Proteoglycans; Cicatrix; Female; Fibroblasts; Ganglia, Spinal; Gene Expression; Glycoproteins; Growth Inhibitors; Myelin Basic Protein; Nerve Regeneration; Nerve Tissue Proteins; Neuropilin-1; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Semaphorin-3A; Spinal Cord; Tenascin | 2001 |