mycophenolic-acid has been researched along with Tuberous-Sclerosis* in 2 studies
2 other study(ies) available for mycophenolic-acid and Tuberous-Sclerosis
Article | Year |
---|---|
A mechanistic target of rapamycin inhibitor, everolimus safely ameliorated lupus nephritis in a patient complicated with tuberous sclerosis.
A 26-year-old woman with tuberous sclerosis complex (TSC) received outpatient treatment for the complication of systemic lupus erythematosus (SLE) at our hospital. She visited our hospital with a chief complaint of pitting oedema in bilateral lower legs for 3 days. The urinalysis showed massive proteinuria with a lot of white blood cell casts. The blood tests revealed hypoalbuminaemia, hypercholesterolaemia, hypocomplementaemia, and elevated anti-double-stranded DNA antibody titre. Renal biopsy was not performed because of multiple renal angiomyolipomas, which was one of the features of TSC. She was diagnosed with a nephrotic state due to lupus nephritis. Although she had a standard therapy with high-dose corticosteroid and mycophenolate mofetil and tacrolimus, complete remission had not been achieved leading to a steroid-dependent nephrotic syndrome. During the follow-up, the angiomyolipomas became larger and had a risk of rupture at the age of 29 years. Everolimus, a mechanistic target of rapamycin (mTOR) inhibitor, was started for the treatment of angiomyolipomas, and mycophenolate mofetil and tacrolimus were terminated instead. The activity of lupus nephritis was surprisingly ameliorated, and the amount of corticosteroid successfully tapered. Everolimus has been continued for 6 years without severe side effects. Accumulating evidence suggests that the activated mTOR pathway plays a key role in the pathogenesis of SLE. We reported the long-term efficacy and safety of everolimus for refractory SLE in a patient with TSC for the first time. This case suggests that everolimus can be a promising option for the treatment of lupus nephritis. Topics: Adult; Angiomyolipoma; Everolimus; Female; Humans; Lupus Erythematosus, Systemic; Lupus Nephritis; Mycophenolic Acid; Tacrolimus; TOR Serine-Threonine Kinases; Tuberous Sclerosis | 2023 |
IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex.
Recent studies in distinct preclinical tumor models have established the nucleotide synthesis enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) as a viable target for antitumor therapy. IMPDH inhibitors have been used clinically for decades as safe and effective immunosuppressants. However, the potential to repurpose these pharmacological agents for antitumor therapy requires further investigation, including direct comparisons of available compounds. Therefore, we tested structurally distinct IMPDH inhibitors in multiple cell and mouse tumor models of the genetic tumor syndrome tuberous sclerosis complex (TSC). TSC-associated tumors are driven by uncontrolled activation of the growth-promoting protein kinase complex mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), which is also aberrantly activated in the majority of sporadic cancers. Despite eliciting similar immunosuppressive effects, the IMPDH inhibitor mizoribine, used clinically throughout Asia, demonstrated far superior antitumor activity compared with the FDA-approved IMPDH inhibitor mycophenolate mofetil (or CellCept, a prodrug of mycophenolic acid). When compared directly to the mTOR inhibitor rapamycin, mizoribine treatment provided a more durable antitumor response associated with tumor cell death. These results provide preclinical support for repurposing mizoribine, over other IMPDH inhibitors, as an alternative to mTOR inhibitors for the treatment of TSC-associated tumors and possibly other tumors featuring uncontrolled mTORC1 activity. Topics: Animals; Cell Line; Enzyme Inhibitors; IMP Dehydrogenase; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Knockout; Mycophenolic Acid; Neoplasm Proteins; Ribonucleosides; Tuberous Sclerosis | 2020 |